Design of inertial fusion implosions reaching the burning plasma regime
Abstract
One of the last remaining milestones in fusion research before reaching ignition is creating a burning plasma state, where alpha particles from deuterium-tritium (DT) fusion reactions redeposit their energy as the dominant source of heating in the plasma. The indirect-drive inertial confinement fusion approach at the National Ignition Facility (NIF) uses a laser-generated radiation cavity (hohlraum) to spherically implode DT fuel to high temperatures and densities in a central ”hot spot”. Here, we deliver more energy to the hot spot than ever before, while maintaining the extreme pressures required for inertial confinement, by increasing the size of the implosion compared to previous experiments. We develop more efficient hohlraums, to drive these larger implosions within NIF’s current laser energy and power capability and control symmetry by moving energy between laser beams and by changing the shape of the hohlraum. These designs resulted in record fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy. Radiation hydrodynamics simulations show alpha particle heating as the dominant term in the hot spot energy balance, e.g. a burning plasma state. This work is expected to motivate future studies of burning plasmas and improve predictive capability bymore »
- Authors:
-
more »
- OSTI
- Publication Date:
- DOE Contract Number:
- NA0003868; AC52-07NA27344
- Research Org.:
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
- Sponsoring Org.:
- USDOE National Nuclear Security Administration (NNSA)
- Subject:
- 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
- OSTI Identifier:
- 1888230
- DOI:
- https://doi.org/10.7910/DVN/MPKQ9M
Citation Formats
Kritcher, A. L., Young, C. V., Robey, H. F., Weber, C. R., Zylstra, A. B., Hurricane, O. A., Callahan, D. A., Ralph, J. E., Ross, J. S., Baker, K. L., Casey, D. T., Clark, D. S., Döppner, T., Divol, L., Hohenberger, M., Berzak Hopkins, L., Le Pape, S., Meezan, N. B., Pak, A., Patel, P. K., Tommasini, R., Ali, S. J., Amendt, P. A., Atherton, L. J., Bachmann, B., Bailey, D., Benedetti, L. R., Betti, R., Bhandarkar, S. D., Biener, J., Bionta, R. M., Birge, N. W., Bond, E. J., Bradley, D. K., Braun, T., Briggs, T. M., Bruhn, M. W., Celliers, P. M., Chang, B., Chapman, T., Chen, H., Choate, C., Christopherson, A. R., Crippen, J. W., Dewald, E. L., Dittrich, T. R., Edwards, M. J., Farmer, W. A., Field, J. E., Fittinghoff, D., Frenje, J. A., Gaffney, J. A., Gatu Johnson, M., Glenzer, S. H., Grim, G. P., Haan, S., Hahn, K. D., Hall, G. N., Hammel, B. A., Harte, J., Hartouni, E., Heebner, J. E., Hernandez, V. J., Herrmann, H., Herrmann, M. C., Hinkel, D. E., Ho, D. D., Holder, J. P., Hsing, W. W., Huang, H., Humbird, K. D., Izumi, N., Jarrott, L. C., Jeet, J., Jones, O., Kerbel, G. D., Kerr, S. M., Khan, S. F., Kilkenny, J., Kim, Y., Geppert-Kleinrath, H., Geppert-Kleinrath, V., Kong, C., Koning, J. M., Kruse, M. K. G., Kroll, J. J., Kustowski, B., Landen, O. L., Langer, S., Larson, D., Lemos, N. C., Lindl, J. D., Ma, T., MacDonald, M. J., MacGowan, B. J., Mackinnon, A. J., MacLaren, S. A., MacPhee, A. G., Marinak, M. M., Mariscal, D. A., Marley, E. V., Masse, L., Meaney, K., Michel, P. A., Millot, M., Milovich, J. L., Moody, J. D., Moore, A. S., Morton, J. W., Murphy, T., Newman, K., Di Nicola, J.-M. G., Nikroo, A., Nora, R., Patel, M. V., Pelz, L. J., Peterson, J. L., Ping, Y., Pollock, B. B., Ratledge, M., Rice, N. G., Rinderknecht, H., Rosen, M., Rubery, M. S., Salmonson, J. D., Sater, J., Schiaffino, S., Schlossberg, D. J., Schneider, M. B., Schroeder, C. R., Scott, H. A., Sepke, S. M., Sequoia, K., Sherlock, M. W., Shin, S., Smalyuk, V. A., Spears, B. K., Springer, P. T., Stadermann, M., Stoupin, S., Strozzi, D. J., Suter, L. J., Thomas, C. A., Town, R. P. J., Trosseille, C., Tubman, E. R., Volegov, P. L., Widmann, K., Wild, C., Wilde, C. H., Van Wonterghem, B. M., Woods, D. T., Woodworth, B. N., Yamaguchi, M., Yang, S. T., and Zimmerman, G. B. Design of inertial fusion implosions reaching the burning plasma regime. United States: N. p., 2022.
Web. doi:10.7910/DVN/MPKQ9M.
Kritcher, A. L., Young, C. V., Robey, H. F., Weber, C. R., Zylstra, A. B., Hurricane, O. A., Callahan, D. A., Ralph, J. E., Ross, J. S., Baker, K. L., Casey, D. T., Clark, D. S., Döppner, T., Divol, L., Hohenberger, M., Berzak Hopkins, L., Le Pape, S., Meezan, N. B., Pak, A., Patel, P. K., Tommasini, R., Ali, S. J., Amendt, P. A., Atherton, L. J., Bachmann, B., Bailey, D., Benedetti, L. R., Betti, R., Bhandarkar, S. D., Biener, J., Bionta, R. M., Birge, N. W., Bond, E. J., Bradley, D. K., Braun, T., Briggs, T. M., Bruhn, M. W., Celliers, P. M., Chang, B., Chapman, T., Chen, H., Choate, C., Christopherson, A. R., Crippen, J. W., Dewald, E. L., Dittrich, T. R., Edwards, M. J., Farmer, W. A., Field, J. E., Fittinghoff, D., Frenje, J. A., Gaffney, J. A., Gatu Johnson, M., Glenzer, S. H., Grim, G. P., Haan, S., Hahn, K. D., Hall, G. N., Hammel, B. A., Harte, J., Hartouni, E., Heebner, J. E., Hernandez, V. J., Herrmann, H., Herrmann, M. C., Hinkel, D. E., Ho, D. D., Holder, J. P., Hsing, W. W., Huang, H., Humbird, K. D., Izumi, N., Jarrott, L. C., Jeet, J., Jones, O., Kerbel, G. D., Kerr, S. M., Khan, S. F., Kilkenny, J., Kim, Y., Geppert-Kleinrath, H., Geppert-Kleinrath, V., Kong, C., Koning, J. M., Kruse, M. K. G., Kroll, J. J., Kustowski, B., Landen, O. L., Langer, S., Larson, D., Lemos, N. C., Lindl, J. D., Ma, T., MacDonald, M. J., MacGowan, B. J., Mackinnon, A. J., MacLaren, S. A., MacPhee, A. G., Marinak, M. M., Mariscal, D. A., Marley, E. V., Masse, L., Meaney, K., Michel, P. A., Millot, M., Milovich, J. L., Moody, J. D., Moore, A. S., Morton, J. W., Murphy, T., Newman, K., Di Nicola, J.-M. G., Nikroo, A., Nora, R., Patel, M. V., Pelz, L. J., Peterson, J. L., Ping, Y., Pollock, B. B., Ratledge, M., Rice, N. G., Rinderknecht, H., Rosen, M., Rubery, M. S., Salmonson, J. D., Sater, J., Schiaffino, S., Schlossberg, D. J., Schneider, M. B., Schroeder, C. R., Scott, H. A., Sepke, S. M., Sequoia, K., Sherlock, M. W., Shin, S., Smalyuk, V. A., Spears, B. K., Springer, P. T., Stadermann, M., Stoupin, S., Strozzi, D. J., Suter, L. J., Thomas, C. A., Town, R. P. J., Trosseille, C., Tubman, E. R., Volegov, P. L., Widmann, K., Wild, C., Wilde, C. H., Van Wonterghem, B. M., Woods, D. T., Woodworth, B. N., Yamaguchi, M., Yang, S. T., & Zimmerman, G. B. Design of inertial fusion implosions reaching the burning plasma regime. United States. doi:https://doi.org/10.7910/DVN/MPKQ9M
Kritcher, A. L., Young, C. V., Robey, H. F., Weber, C. R., Zylstra, A. B., Hurricane, O. A., Callahan, D. A., Ralph, J. E., Ross, J. S., Baker, K. L., Casey, D. T., Clark, D. S., Döppner, T., Divol, L., Hohenberger, M., Berzak Hopkins, L., Le Pape, S., Meezan, N. B., Pak, A., Patel, P. K., Tommasini, R., Ali, S. J., Amendt, P. A., Atherton, L. J., Bachmann, B., Bailey, D., Benedetti, L. R., Betti, R., Bhandarkar, S. D., Biener, J., Bionta, R. M., Birge, N. W., Bond, E. J., Bradley, D. K., Braun, T., Briggs, T. M., Bruhn, M. W., Celliers, P. M., Chang, B., Chapman, T., Chen, H., Choate, C., Christopherson, A. R., Crippen, J. W., Dewald, E. L., Dittrich, T. R., Edwards, M. J., Farmer, W. A., Field, J. E., Fittinghoff, D., Frenje, J. A., Gaffney, J. A., Gatu Johnson, M., Glenzer, S. H., Grim, G. P., Haan, S., Hahn, K. D., Hall, G. N., Hammel, B. A., Harte, J., Hartouni, E., Heebner, J. E., Hernandez, V. J., Herrmann, H., Herrmann, M. C., Hinkel, D. E., Ho, D. D., Holder, J. P., Hsing, W. W., Huang, H., Humbird, K. D., Izumi, N., Jarrott, L. C., Jeet, J., Jones, O., Kerbel, G. D., Kerr, S. M., Khan, S. F., Kilkenny, J., Kim, Y., Geppert-Kleinrath, H., Geppert-Kleinrath, V., Kong, C., Koning, J. M., Kruse, M. K. G., Kroll, J. J., Kustowski, B., Landen, O. L., Langer, S., Larson, D., Lemos, N. C., Lindl, J. D., Ma, T., MacDonald, M. J., MacGowan, B. J., Mackinnon, A. J., MacLaren, S. A., MacPhee, A. G., Marinak, M. M., Mariscal, D. A., Marley, E. V., Masse, L., Meaney, K., Michel, P. A., Millot, M., Milovich, J. L., Moody, J. D., Moore, A. S., Morton, J. W., Murphy, T., Newman, K., Di Nicola, J.-M. G., Nikroo, A., Nora, R., Patel, M. V., Pelz, L. J., Peterson, J. L., Ping, Y., Pollock, B. B., Ratledge, M., Rice, N. G., Rinderknecht, H., Rosen, M., Rubery, M. S., Salmonson, J. D., Sater, J., Schiaffino, S., Schlossberg, D. J., Schneider, M. B., Schroeder, C. R., Scott, H. A., Sepke, S. M., Sequoia, K., Sherlock, M. W., Shin, S., Smalyuk, V. A., Spears, B. K., Springer, P. T., Stadermann, M., Stoupin, S., Strozzi, D. J., Suter, L. J., Thomas, C. A., Town, R. P. J., Trosseille, C., Tubman, E. R., Volegov, P. L., Widmann, K., Wild, C., Wilde, C. H., Van Wonterghem, B. M., Woods, D. T., Woodworth, B. N., Yamaguchi, M., Yang, S. T., and Zimmerman, G. B. 2022.
"Design of inertial fusion implosions reaching the burning plasma regime". United States. doi:https://doi.org/10.7910/DVN/MPKQ9M. https://www.osti.gov/servlets/purl/1888230. Pub date:Fri Jun 10 00:00:00 EDT 2022
@article{osti_1888230,
title = {Design of inertial fusion implosions reaching the burning plasma regime},
author = {Kritcher, A. L. and Young, C. V. and Robey, H. F. and Weber, C. R. and Zylstra, A. B. and Hurricane, O. A. and Callahan, D. A. and Ralph, J. E. and Ross, J. S. and Baker, K. L. and Casey, D. T. and Clark, D. S. and Döppner, T. and Divol, L. and Hohenberger, M. and Berzak Hopkins, L. and Le Pape, S. and Meezan, N. B. and Pak, A. and Patel, P. K. and Tommasini, R. and Ali, S. J. and Amendt, P. A. and Atherton, L. J. and Bachmann, B. and Bailey, D. and Benedetti, L. R. and Betti, R. and Bhandarkar, S. D. and Biener, J. and Bionta, R. M. and Birge, N. W. and Bond, E. J. and Bradley, D. K. and Braun, T. and Briggs, T. M. and Bruhn, M. W. and Celliers, P. M. and Chang, B. and Chapman, T. and Chen, H. and Choate, C. and Christopherson, A. R. and Crippen, J. W. and Dewald, E. L. and Dittrich, T. R. and Edwards, M. J. and Farmer, W. A. and Field, J. E. and Fittinghoff, D. and Frenje, J. A. and Gaffney, J. A. and Gatu Johnson, M. and Glenzer, S. H. and Grim, G. P. and Haan, S. and Hahn, K. D. and Hall, G. N. and Hammel, B. A. and Harte, J. and Hartouni, E. and Heebner, J. E. and Hernandez, V. J. and Herrmann, H. and Herrmann, M. C. and Hinkel, D. E. and Ho, D. D. and Holder, J. P. and Hsing, W. W. and Huang, H. and Humbird, K. D. and Izumi, N. and Jarrott, L. C. and Jeet, J. and Jones, O. and Kerbel, G. D. and Kerr, S. M. and Khan, S. F. and Kilkenny, J. and Kim, Y. and Geppert-Kleinrath, H. and Geppert-Kleinrath, V. and Kong, C. and Koning, J. M. and Kruse, M. K. G. and Kroll, J. J. and Kustowski, B. and Landen, O. L. and Langer, S. and Larson, D. and Lemos, N. C. and Lindl, J. D. and Ma, T. and MacDonald, M. J. and MacGowan, B. J. and Mackinnon, A. J. and MacLaren, S. A. and MacPhee, A. G. and Marinak, M. M. and Mariscal, D. A. and Marley, E. V. and Masse, L. and Meaney, K. and Michel, P. A. and Millot, M. and Milovich, J. L. and Moody, J. D. and Moore, A. S. and Morton, J. W. and Murphy, T. and Newman, K. and Di Nicola, J.-M. G. and Nikroo, A. and Nora, R. and Patel, M. V. and Pelz, L. J. and Peterson, J. L. and Ping, Y. and Pollock, B. B. and Ratledge, M. and Rice, N. G. and Rinderknecht, H. and Rosen, M. and Rubery, M. S. and Salmonson, J. D. and Sater, J. and Schiaffino, S. and Schlossberg, D. J. and Schneider, M. B. and Schroeder, C. R. and Scott, H. A. and Sepke, S. M. and Sequoia, K. and Sherlock, M. W. and Shin, S. and Smalyuk, V. A. and Spears, B. K. and Springer, P. T. and Stadermann, M. and Stoupin, S. and Strozzi, D. J. and Suter, L. J. and Thomas, C. A. and Town, R. P. J. and Trosseille, C. and Tubman, E. R. and Volegov, P. L. and Widmann, K. and Wild, C. and Wilde, C. H. and Van Wonterghem, B. M. and Woods, D. T. and Woodworth, B. N. and Yamaguchi, M. and Yang, S. T. and Zimmerman, G. B.},
abstractNote = {One of the last remaining milestones in fusion research before reaching ignition is creating a burning plasma state, where alpha particles from deuterium-tritium (DT) fusion reactions redeposit their energy as the dominant source of heating in the plasma. The indirect-drive inertial confinement fusion approach at the National Ignition Facility (NIF) uses a laser-generated radiation cavity (hohlraum) to spherically implode DT fuel to high temperatures and densities in a central ”hot spot”. Here, we deliver more energy to the hot spot than ever before, while maintaining the extreme pressures required for inertial confinement, by increasing the size of the implosion compared to previous experiments. We develop more efficient hohlraums, to drive these larger implosions within NIF’s current laser energy and power capability and control symmetry by moving energy between laser beams and by changing the shape of the hohlraum. These designs resulted in record fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy. Radiation hydrodynamics simulations show alpha particle heating as the dominant term in the hot spot energy balance, e.g. a burning plasma state. This work is expected to motivate future studies of burning plasmas and improve predictive capability by providing a benchmark for modeling used to understand the proximity to ignition.},
doi = {10.7910/DVN/MPKQ9M},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jun 10 00:00:00 EDT 2022},
month = {Fri Jun 10 00:00:00 EDT 2022}
}
