DOE Data Explorer title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT)

Abstract

The engineering limits of plasma facing components (PFCs) constrain the allowable operational space of tokamaks. Poorly managed heat fluxes that push the PFCs beyond their limits not only degrade core plasma performance via elevated impurities, but can also result in PFC failure due to thermal stresses or melting. Simple axisymmetric assumptions fail to capture the complex interaction between 3D PFC geometry and 2D or 3D plasmas. This results in fusion systems that must either operate with increased risk or reduce PFC loads, potentially through lower core plasma performance, to maintain a nominal safety factor. High precision 3D heat flux predictions are necessary to accurately ascertain the state of a PFC given the evolution of the magnetic equilibrium. A new code, the Heat flux Engineering Analysis Toolkit (HEAT), has been developed to provide high precision 3D predictions and analysis for PFCs. HEAT couples many otherwise disparate computational tools together into a single open source python package. Magnetic equilibrium, engineering CAD, finite volume solvers, scrape off layer plasma physics, visualization, high performace computing, and more, are connected in a single web-based user interface. Linux users may use HEAT without any software prerequisites via an appImage. This manuscript introduces HEAT, discusses the softwaremore » architecture, presents first HEAT results, and outlines physics modules in development.« less

Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
DOE Contract Number:  
AC02-09CH11466
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
Keywords:
fusion; magnetic confinement; divertor physics; tokamak; heat; python
OSTI Identifier:
1814949
DOI:
https://doi.org/10.11578/1814949

Citation Formats

Looby, Tom, Reinke, Matthew, Wingen, Andreas, Menard, Jonathan, Gerhardt, Stefan, Gray, Travis, Donovan, David, Unterberg, Ezekial, Klabacha, Jonathan, and Messineo, Mike. A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT). United States: N. p., 2021. Web. doi:10.11578/1814949.
Looby, Tom, Reinke, Matthew, Wingen, Andreas, Menard, Jonathan, Gerhardt, Stefan, Gray, Travis, Donovan, David, Unterberg, Ezekial, Klabacha, Jonathan, & Messineo, Mike. A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT). United States. doi:https://doi.org/10.11578/1814949
Looby, Tom, Reinke, Matthew, Wingen, Andreas, Menard, Jonathan, Gerhardt, Stefan, Gray, Travis, Donovan, David, Unterberg, Ezekial, Klabacha, Jonathan, and Messineo, Mike. 2021. "A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT)". United States. doi:https://doi.org/10.11578/1814949. https://www.osti.gov/servlets/purl/1814949. Pub date:Fri Mar 26 00:00:00 EDT 2021
@article{osti_1814949,
title = {A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT)},
author = {Looby, Tom and Reinke, Matthew and Wingen, Andreas and Menard, Jonathan and Gerhardt, Stefan and Gray, Travis and Donovan, David and Unterberg, Ezekial and Klabacha, Jonathan and Messineo, Mike},
abstractNote = {The engineering limits of plasma facing components (PFCs) constrain the allowable operational space of tokamaks. Poorly managed heat fluxes that push the PFCs beyond their limits not only degrade core plasma performance via elevated impurities, but can also result in PFC failure due to thermal stresses or melting. Simple axisymmetric assumptions fail to capture the complex interaction between 3D PFC geometry and 2D or 3D plasmas. This results in fusion systems that must either operate with increased risk or reduce PFC loads, potentially through lower core plasma performance, to maintain a nominal safety factor. High precision 3D heat flux predictions are necessary to accurately ascertain the state of a PFC given the evolution of the magnetic equilibrium. A new code, the Heat flux Engineering Analysis Toolkit (HEAT), has been developed to provide high precision 3D predictions and analysis for PFCs. HEAT couples many otherwise disparate computational tools together into a single open source python package. Magnetic equilibrium, engineering CAD, finite volume solvers, scrape off layer plasma physics, visualization, high performace computing, and more, are connected in a single web-based user interface. Linux users may use HEAT without any software prerequisites via an appImage. This manuscript introduces HEAT, discusses the software architecture, presents first HEAT results, and outlines physics modules in development.},
doi = {10.11578/1814949},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Mar 26 00:00:00 EDT 2021},
month = {Fri Mar 26 00:00:00 EDT 2021}
}