Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

PhyML

Software ·
DOI:https://doi.org/10.11578/dc.20240918.7· OSTI ID:code-143981 · Code ID:143981
 [1];  [1]
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

Python scripts for physics informed machine learning for time-dependent problems. The code implements hard constrained sequential physics-informed neural networks (HCSPINNs) using JAX library. The details of the method and implementation can be found in the following paper: Roy, P., & Castonguay, S. (2024). Exact Enforcement of Temporal Continuity in Sequential Physics- Informed Neural Networks. arXiv preprint arXiv:2403.03223. (https://arxiv.org/abs/2403.03223)

Short Name / Acronym:
PhyML
Site Accession Number:
LLNL-CODE-868717
Software Type:
Scientific
License(s):
MIT License
Research Organization:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)

Primary Award/Contract Number:
AC52-07NA27344
DOE Contract Number:
AC52-07NA27344
Code ID:
143981
OSTI ID:
code-143981
Country of Origin:
United States

Similar Records

Neural Networks for Supercapacitor Modeling
Software · Tue Mar 22 20:00:00 EDT 2022 · OSTI ID:code-73414

Topology Optimization for Porous Electrodes
Software · Thu Feb 17 19:00:00 EST 2022 · OSTI ID:code-71771

nuclear-score-maximization v1.0
Software · Mon Jul 22 20:00:00 EDT 2024 · OSTI ID:code-138004

Related Subjects