PhyML
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Python scripts for physics informed machine learning for time-dependent problems. The code implements hard constrained sequential physics-informed neural networks (HCSPINNs) using JAX library. The details of the method and implementation can be found in the following paper: Roy, P., & Castonguay, S. (2024). Exact Enforcement of Temporal Continuity in Sequential Physics- Informed Neural Networks. arXiv preprint arXiv:2403.03223. (https://arxiv.org/abs/2403.03223)
- Short Name / Acronym:
- PhyML
- Site Accession Number:
- LLNL-CODE-868717
- Software Type:
- Scientific
- License(s):
- MIT License
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)Primary Award/Contract Number:AC52-07NA27344
- DOE Contract Number:
- AC52-07NA27344
- Code ID:
- 143981
- OSTI ID:
- code-143981
- Country of Origin:
- United States
Similar Records
Neural Networks for Supercapacitor Modeling
Topology Optimization for Porous Electrodes
nuclear-score-maximization v1.0
Software
·
Tue Mar 22 20:00:00 EDT 2022
·
OSTI ID:code-73414
Topology Optimization for Porous Electrodes
Software
·
Thu Feb 17 19:00:00 EST 2022
·
OSTI ID:code-71771
nuclear-score-maximization v1.0
Software
·
Mon Jul 22 20:00:00 EDT 2024
·
OSTI ID:code-138004