PhyML

RESOURCE

Abstract

Python scripts for physics informed machine learning for time-dependent problems. The code implements hard constrained sequential physics-informed neural networks (HCSPINNs) using JAX library. The details of the method and implementation can be found in the following paper: Roy, P., & Castonguay, S. (2024). Exact Enforcement of Temporal Continuity in Sequential Physics- Informed Neural Networks. arXiv preprint arXiv:2403.03223. (https://arxiv.org/abs/2403.03223)
Developers:
Roy, Pratanu [1] Castonguay, Stephen [1]
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Release Date:
2024-06-20
Project Type:
Open Source, Publicly Available Repository
Software Type:
Scientific
Version:
0.1
Licenses:
MIT License
Sponsoring Org.:
Code ID:
143981
Site Accession Number:
LLNL-CODE-868717
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Country of Origin:
United States

RESOURCE

Citation Formats

Roy, Pratanu, and Castonguay, Stephen. PhyML. Computer Software. https://github.com/LLNL/PhyML. USDOE National Nuclear Security Administration (NNSA). 20 Jun. 2024. Web. doi:10.11578/dc.20240918.7.
Roy, Pratanu, & Castonguay, Stephen. (2024, June 20). PhyML. [Computer software]. https://github.com/LLNL/PhyML. https://doi.org/10.11578/dc.20240918.7.
Roy, Pratanu, and Castonguay, Stephen. "PhyML." Computer software. June 20, 2024. https://github.com/LLNL/PhyML. https://doi.org/10.11578/dc.20240918.7.
@misc{ doecode_143981,
title = {PhyML},
author = {Roy, Pratanu and Castonguay, Stephen},
abstractNote = {Python scripts for physics informed machine learning for time-dependent problems. The code implements hard constrained sequential physics-informed neural networks (HCSPINNs) using JAX library. The details of the method and implementation can be found in the following paper: Roy, P., & Castonguay, S. (2024). Exact Enforcement of Temporal Continuity in Sequential Physics- Informed Neural Networks. arXiv preprint arXiv:2403.03223. (https://arxiv.org/abs/2403.03223)},
doi = {10.11578/dc.20240918.7},
url = {https://doi.org/10.11578/dc.20240918.7},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20240918.7}},
year = {2024},
month = {jun}
}