LLNL Automized Surface Titration Model
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
The LLNL Automized Surface Titration Model (L-ASTM) is a community data-driven surface complexation modeling workflow for simulating potentiometric titration of mineral surfaces. The model accepts raw experimental potentiometric titration data formatted in a findable, accessible, interoperable, and reusable (FAIR) structure. The workflow was coded in Python and coupled to PHREEQC for surface complexation modeling and PEST for data fitting and parameter estimation.
- Short Name / Acronym:
- L-ASTM
- Site Accession Number:
- LLNL-CODE-856359
- Software Type:
- Scientific
- License(s):
- MIT License
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)Primary Award/Contract Number:AC52-07NA27344
- DOE Contract Number:
- AC52-07NA27344
- Code ID:
- 115054
- OSTI ID:
- code-115054
- Country of Origin:
- United States
Similar Records
Community Data Mining Approach for Surface Complexation Database Development
Application of community data to surface complexation modeling framework development: Iron oxide protolysis
FAIRmaterials: Ontology Tools with Data FAIRification in Development
Journal Article
·
Mon Jan 31 19:00:00 EST 2022
· Environmental Science and Technology
·
OSTI ID:1866540
Application of community data to surface complexation modeling framework development: Iron oxide protolysis
Journal Article
·
Fri Jun 09 20:00:00 EDT 2023
· Journal of Colloid and Interface Science
·
OSTI ID:1992192
FAIRmaterials: Ontology Tools with Data FAIRification in Development
Journal Article
·
Sun Jan 25 19:00:00 EST 2026
· Journal of Open Source Software
·
OSTI ID:3014336