LLNL Automized Surface Titration Model

RESOURCE

Abstract

The LLNL Automized Surface Titration Model (L-ASTM) is a community data-driven surface complexation modeling workflow for simulating potentiometric titration of mineral surfaces. The model accepts raw experimental potentiometric titration data formatted in a findable, accessible, interoperable, and reusable (FAIR) structure. The workflow was coded in Python and coupled to PHREEQC for surface complexation modeling and PEST for data fitting and parameter estimation.
Developers:
Solchan, Han [1] Chang, Elliot [1] Zavarin, Mavrik [1]
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Release Date:
2023-09-29
Project Type:
Open Source, Publicly Available Repository
Software Type:
Scientific
Version:
1.0
Licenses:
MIT License
Sponsoring Org.:
Code ID:
115054
Site Accession Number:
LLNL-CODE-856359
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Country of Origin:
United States

RESOURCE

Citation Formats

Solchan, Han, Chang, Elliot S., and Zavarin, Mavrik. LLNL Automized Surface Titration Model. Computer Software. https://github.com/LLNL/LLNL-ASTM. USDOE National Nuclear Security Administration (NNSA). 29 Sep. 2023. Web. doi:10.11578/dc.20231030.1.
Solchan, Han, Chang, Elliot S., & Zavarin, Mavrik. (2023, September 29). LLNL Automized Surface Titration Model. [Computer software]. https://github.com/LLNL/LLNL-ASTM. https://doi.org/10.11578/dc.20231030.1.
Solchan, Han, Chang, Elliot S., and Zavarin, Mavrik. "LLNL Automized Surface Titration Model." Computer software. September 29, 2023. https://github.com/LLNL/LLNL-ASTM. https://doi.org/10.11578/dc.20231030.1.
@misc{ doecode_115054,
title = {LLNL Automized Surface Titration Model},
author = {Solchan, Han and Chang, Elliot S. and Zavarin, Mavrik},
abstractNote = {The LLNL Automized Surface Titration Model (L-ASTM) is a community data-driven surface complexation modeling workflow for simulating potentiometric titration of mineral surfaces. The model accepts raw experimental potentiometric titration data formatted in a findable, accessible, interoperable, and reusable (FAIR) structure. The workflow was coded in Python and coupled to PHREEQC for surface complexation modeling and PEST for data fitting and parameter estimation.},
doi = {10.11578/dc.20231030.1},
url = {https://doi.org/10.11578/dc.20231030.1},
howpublished = {[Computer Software] \url{https://doi.org/10.11578/dc.20231030.1}},
year = {2023},
month = {sep}
}