Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration
- ORNL
Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.
- Research Organization:
- Oak Ridge National Laboratory (ORNL); Fuels, Engines and Emissions Research Center
- Sponsoring Organization:
- EE USDOE - Office of Energy Efficiency and Renewable Energy (EE)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 992545
- Country of Publication:
- United States
- Language:
- English
Similar Records
Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines
Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine