Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Structural organization of mouse peroxisome proliferator-activated receptor {gamma} (mPPAR{gamma}) gene: Alternative promoter use and different splicing yield two mPPAR{gamma} isoforms

Journal Article · · Proceedings of the National Academy of Sciences of the United States of America
; ;  [1]
  1. Northwestern Univ. Medical School, Chicago, IL (United States); and others
To gain insight into the regulation of expression of peroxisome proliferator-activated receptor (PPAR) isoforms, we have determined the structural organization of the mouse PPAR {gamma} (mPPAR{gamma}) gene. This gene extends >105 kb and gives rise to two mRNAs (mPPAR{gamma}1 and mPPAR{gamma}2) that differ at their 5{prime} ends. The mPPAR{gamma}2 cDNA encodes an additional 30 amino acids N-terminal to the first ATG codon of mPPAR{gamma}1 and reveals a different 5{prime} untranslated sequence. We show that mPPAR{gamma}1 mRNA is encoded by eight exons, whereas the mPPAR{gamma}2 mRNA is encoded by seven exons. Most of the 5{prime} untranslated sequence of mPPAR{gamma}1 mRNA is encoded by two exons, whereas the 5{prime} untranslated sequence of mPPAR{gamma}1 mRNA is encoded by two exons, whereas the 5{prime} untranslated sequence and the extra 30 N-terminal amino acids of mPPAR{gamma}2 are encoded by one exon, which is located between the second and third exons coding for mPPAR{gamma}1. The last six exons of mPPAR{gamma} gene code for identical sequences in mPPAR{gamma}1 and mPPAR{gamma}2 isoforms. The mPPAR{gamma}1 and mPPAR{gamma}2 isoforms are transcribed from different promoters. The mPPAR{gamma} gene has been mapped to chromosome 6 E3-F1 by in situ hybridization using a biotin-labeled probe. These results establish that at least one of the PPAR genes yields more than one protein product, similar to that encountered with retinoid X receptor and retinoic acid receptor genes. The existence of multiple PPAR isoforms transcribed from different promoters could increase in the diversity of ligand and tissue-specific transcriptional responses. 22 refs., 5 figs.
Sponsoring Organization:
USDOE
OSTI ID:
98862
Journal Information:
Proceedings of the National Academy of Sciences of the United States of America, Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Issue: 17 Vol. 92; ISSN PNASA6; ISSN 0027-8424
Country of Publication:
United States
Language:
English