Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Coarsening of Two-Dimensional Nanoclusters on Metal Surfaces

Journal Article · · The Journal of Physical Chemistry
DOI:https://doi.org/10.1021/jp8063849· OSTI ID:984440

We describe experimental observations and theoretical analysis of the coarsening of distributions of two-dimensional nanoclusters, either adatom islands or vacancy pits, on metal surfaces. A detailed analyses is provided for Ag(111) and Ag(100) surfaces, although we also discuss corresponding behavior for Cu(111) and Cu(100) surfaces. The dominant kinetic pathway for coarsening can be either Ostwald ripening (OR), i.e., growth of larger clusters at the expense of smaller ones, or Smoluchowski ripening (SR), i.e., diffusion and coalescence of clusters. First, for pristine additive-free surfaces, we elucidate the factors which control the dominant pathway. OR kinetics generally follows the predictions of mesoscale continuum theories. SR kinetics is controlled by the size-dependence of cluster diffusion. However, this size-dependence, together with that of nanostructure shape relaxation upon coalescence, often deviates from mesoscale predictions as a direct consequence of the nanoscale dimension of the clusters. Second, we describe examples for the above systems where trace amounts of a chemical additive lead to dramatic enhancement of coarsening. We focus on the scenario where 'facile reaction' of metal and additive atoms leads to the formation of mobile additive-metal complexes which can efficiently transport metal across the surface, i.e., additive-enhanced OR. A suitable reaction-diffusion equation formulation is developed to describe this behavior.

Research Organization:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-07CH11358
OSTI ID:
984440
Report Number(s):
IS-J 7477
Journal Information:
The Journal of Physical Chemistry, Journal Name: The Journal of Physical Chemistry Journal Issue: 13 Vol. 113; ISSN 1932-7447
Country of Publication:
United States
Language:
English

Similar Records

Formation and coarsening of epitaxially-supported metal nanoclusters
Journal Article · Wed Aug 28 00:00:00 EDT 2024 · Surface Science · OSTI ID:2448522

Coarsening mechanisms in a metal film: From cluster diffusion to vacancy ripening
Journal Article · Sun Dec 31 23:00:00 EST 1995 · Physical Review Letters · OSTI ID:278794

Energetics and dynamics at a metal surface
Conference · Tue Dec 30 23:00:00 EST 1997 · OSTI ID:559969