Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A Cartesian grid embedded boundary method for solving the Poisson and heat equations with discontinuous coefficients in three dimensions

Journal Article · · Journal of Computational Physics
OSTI ID:980773
We present a method for solving Poisson and heat equations with discon- tinuous coefficients in two- and three-dimensions. It uses a Cartesian cut-cell/embedded boundary method to represent the interface between materi- als, as described in Johansen& Colella (1998). Matching conditions across the interface are enforced using an approximation to fluxes at the boundary. Overall second order accuracy is achieved, as indicated by an array of tests using non-trivial interface geometries. Both the elliptic and heat solvers are shown to remain stable and efficient for material coefficient contrasts up to 106, thanks in part to the use of geometric multigrid. A test of accuracy when adaptive mesh refinement capabilities are utilized is also performed. An example problem relevant to nuclear reactor core simulation is presented, demonstrating the ability of the method to solve problems with realistic physical parameters.
Research Organization:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
Sponsoring Organization:
Computational Research Division; Physics Division
DOE Contract Number:
AC02-05CH11231
OSTI ID:
980773
Report Number(s):
LBNL-2929E; Journal Serial ID: 0021- 9991
Journal Information:
Journal of Computational Physics, Journal Name: Journal of Computational Physics
Country of Publication:
United States
Language:
English