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Abstract

We present a method for solving Poisson and heat equations with discon-
tinuous coefficients in two- and three-dimensions. It uses a Cartesian cut-
cell/embedded boundary method to represent the interface between materi-
als, as described in Johansen & Colella (1998). Matching conditions across
the interface are enforced using an approximation to fluxes at the boundary.
Overall second order accuracy is achieved, as indicated by an array of tests
using non-trivial interface geometries. Both the elliptic and heat solvers are
shown to remain stable and efficient for material coefficient contrasts up to
105, thanks in part to the use of geometric multigrid. A test of accuracy
when adaptive mesh refinement capabilities are utilized is also performed.
An example problem relevant to nuclear reactor core simulation is presented,
demonstrating the ability of the method to solve problems with realistic
physical parameters.
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1. Introduction

We consider elliptic and parabolic problems in regions with two materials,
each of which occupies a bounded subset QP, p = 4, —, of the overall domain
Q= Up QP. One region usually encloses the other; in that case we refer to
the inclusion, or interior region, by €~ and the exterior region by Q. At
the boundary §QF between materials, jump conditions on the solution ¢ and
flux F? are specified
?]
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Here n? is the normal to the boundary, and the functions gp and g describe
the magnitude of the jump at each point in time and space. Our method

applies to the heat equation in two materials,
dp =rK"Ap+ fon @, ¢(x,0) = (x), (2)

subject to the above jump conditions at the interface. In this case, as well
as in the elliptic equations to which the method is applied, the flux F? is
proportional to the material coefficient. While this coefficient is constant
within each material, it is discontinuous across the interface.

There are a number of schemes for handling elliptic and parabolic prob-
lems of this type extant in the literature. Finite difference schemes for fixed
boundaries, of the type pioneered by Shortley & Weller [1], have been greatly

improved upon in the intervening years. Most importantly in the context of



this work, they have been extended to handle discontinuous jumps in the
form of Equation (10). Immersed boundary methods, modifications of the
method first presented by Peskin [2], discretize a delta-function source term
on the boundary, retaining the symmetric form of the linear system. Im-
mersed interface methods [3] explicitly incorporate the jump condition into
the underlying finite difference stencil coefficients. This results in a scheme
that more accurately represents the jump conditions, at the expense of con-
siderable additional complexity and the loss of symmetry in the underlying
linear system. Finally in the context of finite difference schemes, ghost fluid
methods [4] use a type of analytic continuation of the solution. A ghost
fluid, residing in the regions ostensibly outside the solution domain, is used
to explicitly enforce the matching conditions. As originally formulated, the
method was first order accurate. It has been extended to second order ac-
curacy for boundaries with continuous second derivatives [5]. They have the
advantage of retaining a symmetric system, allowing the use of a wider range
of fast linear solvers.

Outside the realm of finite difference methods, integral methods recast
the elliptic PDE via potential theory as integral equations. Fast integral
solvers can often be utilized against this class of problem; these generally fall
into two categories. One method involves the use of a fast Poisson solver on
a simple (e.g. Cartesian) enclosing domain, plus the application of a suitable
correction at the boundary [6]. The second combines a fast (e.g. multipole or
FFT) method and an iterative solver. In either case, conditioning issues can
arise in problems with large discontinuities in the material coefficient [7], ne-

cessitating a modification of the underlying integral equation representation.



Nevertheless, these methods are efficient in a wide variety of problems.

Our method is based on a finite volume approach to the spatial discretiza-
tion of elliptic equations. The method is conservative, a distinct advantage
in certain classes of problems. For low-Mach flows with heat transfer, for
instance, conservative schemes avoid unphysical results arising in marginally
resolved or under-resolved situations [8, 9].

Finite volume methods for interface problems encompass a variety of ap-
proaches. In the context of conjugate heat transfer in complex geometries, the
overlapping grid method of Henshaw & Chand [10] decomposes the domain
into a number of sub-domains. The grid on each sub-domain is boundary
fitting, an advantage that comes at the expense of the loss of conservation.
Each sub-domain can utilize a solver specific to the physics in it.

Oevermann et al [11, 12] present a finite volume method for variable and
discontinuous coefficient elliptic problems in two- and three-dimensions. In 3-
D, it relies on tri-linear approximations to the solution within each Cartesian
control volume to discretize the integral form of the divergence theorem in
a finite element fashion. Small volume cells are handled via an asymptotic
approach. The method exhibits local and global second order accuracy on
this class of problems.

Our work follows in the steps of the work in [13, 14, 15] in using pure
finite-volume schemes for elliptic and parabolic equations with embedded
boundaries (EB). The first step in using Cartesian EB methods is grid gen-
eration, which has been studied extensively using a number of different rep-
resentations of the geometry. Surface triangulations [16] are widely used,

particularly in engineering contexts involving extremely complex geometries.



Our method uses an implicit function representation [17] that provides dis-
cretizations of complex geometries accurate to arbitrary order in a straight-
forward manner.

The main shortcoming in previous Cartesian EB methods, insofar as their
application to multi-material problems, lies in their use of prescribed bound-
ary conditions at the EB. A Neumann interface gave boundary fluxes directly,
while Dirichlet boundary conditions at the EB necessitated defining a stencil
for calculating fluxes at the boundary using data at neighboring cells. In the
multi-material context boundary conditions at the interface are not directly
prescribed, but instead constrained by matching conditions on the jump in
the solution and flux across it. The present work extends the EB methodol-
ogy to handle such jump conditions, and thereby solve multi-material Poisson
and heat equations with a discontinuity in the material coefficient at the in-
terface between the two. Like previous work, it maintains global second order
accuracy. By treating special cases related to under-resolved geometries, like
the presence of multiple interfaces within a Cartesian control volume, we
are able to use geometric multigrid methods for efficient solution of elliptic
equations. Moreover, our use of the Chombo software infrastructure provides
two important capabilities from a computational efficiency standpoint. The
first is adaptive mesh refinement, which is crucial in many problems involv-
ing widely separated spatial scales. Second, it provides well tested parallel
computing capabilities, which is crucial in approaching real-world problems.

Our time discretization of this equation necessitates solving a set of el-

liptic equations during each step forward in time. Specifically, we solve the



Helmholtz equation
(@’ + BPA) ¢ = p, (3)

where o and (P are the material coefficients, subject to jump conditions
across the boundary dQ%. We first describe the elliptic algorithm, starting
with the spatial discretization in Section 2. This is followed by a treatment
of special considerations for the use of geometric multigrid, in Section 3. An
outline of the overall algorithm is given in Section 4.

Descriptions of the tests used to validate the method follow the algorith-
mic sections. These include two and three dimensional solution error tests
confirming second order accuracy for the Poisson equation in Section 5.1 and
Section 5.3. Tests of the efficiency of the multigrid solver in 2-D and 3-D
are described in Section 5.2. The final set of test are of accuracy for the
heat equation in 3-D, in Section 5.4. We conclude with results more realis-
tic problem, showing heat conduction in a nuclear reactor fuel assembly, in

Section 5.5.

2. Spatial Discretization of the Laplacian

The underlying discretization of space is given by rectangular control
volumes on a Cartesian grid: T; = [(1 — %u) h, (i + %u) h} i € 7% where
d is the dimensionality of the problem, h is the mesh spacing, and u is the
vector whose entries are all ones. Each material domain 2’ and material
interface 0P is represented by its intersection with the Cartesian grid. In
general, a given Cartesian control volume Y; may be intersected by one or

more material interfaces. Consequently, there may be multiple p-material

control volumes associated with each Yj; see Figure 1. In the case that
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Figure 1: A 2-D Cartesian control volume, and its associated material control volumes.
In this case the volume is crossed by two material interfaces. The top region is in the
p = + phase, the region below it in phase p’ = —, and the bottom region in phase p = +
again. Each material control volume is labeled by the Cartesian volume containing it, i,
its phase p and, if there are multiple volumes of that phase in the Cartesian volume, the
index v, as le v Interfaces between material control volumes are shown as solid grey lines,
whose areas are labeled AZ. Non-zero faces of the material control volumes, lying on the

boundary of the Cartesian control volume, are labeled A? . .
2€s,



there is more than one p-material control volume in the Cartesian control
volume, we index them by v = 0,1,.... Each p-material control volume
is denoted by Vif’w and each face by A tleun The latter is defined as the
intersection of (2?7 with 6 Y;, the boundary of the control volume Y; given by
the coordinate planes {x DX = (is + %és) h}, where €, is the unit vector
in the s direction. Finally, associated with each Cartesian control volume
through which one or more material boundaries passes is a boundary face, or
interface, AP (le,y, Vp ) = dV{’ N de C 69" with normal n; ﬁ/’; facing
out of material p. We assume that each material interface connects a single
p-material control volume to a single p’-material control volume. In other

words, each p-material interface must be connected in a one-to-one fashion

to another face in material p’ 7é p having the same spatial location and area

fraction, but opposite normal ( ‘AB’p (leva )‘ = ‘Af ' (‘/if’;/a‘/i?*y)
N3
and nl W - ’Y"I; )

The construction of our finite-volume method follows McCorquodale et al
[14], with suitable modifications for multi-material equations. Based on the

description above, we construct geometric quantities:

e The dimensionless volumes/areas of each p-material control volume /face.

h—(d=1)

: P d
Volume fractions vy, = ‘ } h~¢, face apertures o irle. ‘A1+ oury
and boundary apertures a (lew Vp )‘ h~(d=1)

)



e The locations of centroids and average outward normal to the boundary
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PP dA, (7)

where n?? is the normal, facing outward from phase p, to QP defined

at each point on 6P

Finite volume methods are based on the divergence form of the underly-

ing equation, which we now recast in terms of the above defined geometric

quantities. For the Poisson (heat) equation, the divergence form is V-F = p

(V-F =0,p—f),withF = gV (F = kVy). Our conservative discretization

for the divergence operator in each material control volume V" . 18

1
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(8)

Here F*P(x) is the flux from the p-material through the face with normal

e, at position x, and FBP is the corresponding flux through the material

boundary. So, for example, in the material control volume at upper-right in



Figure 1, the divergence is

1

+ _ + 0,+ o+ 1+
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1,0

B,+— 1B, B +—
+ajg0 F i (Xi,oo )] 9)
Thus, with the discretization in place, we need to calculate fluxes at all faces

and boundaries in order to update the governing equation.

2.1. Flux calculation and enforcing multi-material matching conditions
The Laplacian operator in the Poisson (heat) equation implies a flux F? =

BPV e (FP = kPV). Calculation of fluxes at faces AY

is a relativel
1+%es,~/ y

straightforward matter of linearly interpolating fluxes at face centers to the

face centroids x? ; an example is given in [14], Equations (6) and (7). For

l+%9577
interfaces A”, the process is more involved. First let us introduce simplified
notation,

B ~ B B Op PP
n’?.F=n"".(6Vyp) ’pzﬁp% : (10)

In the single-material case [14, 15], Neumann or Dirichlet boundary condi-
tions are prescribed at the interface. In the former case, the required inter-
face flux FP can be calculated directly. In the Dirichlet case, the state at
the interface, ©?, and at neighboring cells is used to approximate the normal
derivative at the interface g—i. In the multi-material case, neither Dirichlet
nor Neumann boundary conditions at the interface are known a priori. In-
stead, we use the matching conditions, Equation (10), along with equations
approximating the normal derivative in each material, in order to calculate
the boundary flux in Equation (8).

We illustrate the flux determination for the case of the Poisson equation

in two materials. (The same procedure applies to the Helmholtz equation
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solves done in the heat equation update.) First, we rewrite the second (flux)
jump condition of Equation (10) as

8ng’+
% _

9pP

e 675, TN (11)

The states in either material at the interface, ¢”, and normal derivatives,
B . . . :
g—i , are not known. Our method for closing this set of equations is to use

an approximation to the normal derivative of the form

Bip
00— PB4 Y i+ O(A), (12

ictr

where ¢ is the order of approximation. The weight w? associated with the
unknown boundary state, and wj; associated with the known states in neigh-
boring cells depend on the geometric quantities defined in Equations (4-7).
In general, a second order approximation [13] to the normal derivative is
used. In cases where there are insufficient neighboring cells ¢; for a second
order approximation (e.g. due to an under-resolved geometry, or proximity
to the domain boundary), a first order approximation [15] is used.

Since we are using two different approximation schemes it remains to
show here that, independent of which combination of approximation schemes
is used on either side of the interface, the matching conditions can still be
enforced. We do so by showing that both can be recast in the form Equa-
tion (12) given above. Clearly, given its linear dependence on ¢?, this allows
a simple direct solution of the four-by-four system for ¢? and %B on both
sides of the material boundary.

First, consider the second-order stencil based on the quadratic interpola-

tion of two values, ; and ¢, at distances d; and dy along the normal to the

11



interface,

&pB B 1 dy , p di , p
55——@_m<a@9—¢0—£ﬁp—wﬁ~ (13)

The two state values ¢; and ¢y depend on geometric quantities and the states
in neighboring cells, but not p?. Therefore, it is a simple matter to rewrite

this equation in the form above

&pB 1 d2 dl B 1 dl d2
£ = =21 Loy — 2 14
on d2 — dl (dl d2 14 * d2 — dl d2 2 dl 1 ( )

= wPo? + Z wip; + Z wip;, (15)

ie ieQa

where €27 and €2, correspond to the domain of dependence used in calculating
1 and 9. This is clearly in the form of Equation (12).

In the alternative case, when a suitable second order approximation is not
available, we use the Schwartz et al prescription for calculating the normal
derivative, based on least squares estimation. This method involves choosing
a suitable set of neighboring points - three in the case of 2-D, and seven in
3-D - for performing least squares estimation. A matrix of displacements
of these points from the material interface is defined, (A),, = dz#, where p
indexes the points and s indexes direction. Next define a vector of differences
between the state at each point, ¢*, and the state at the boundary, ©?:
()" = (p)* — ©P. We wish to solve AVp = ¢ in order to obtain an

estimate for g—i =n- V. We compute the least squares estimate

Ve~ (ATA) " ATsp = (ATA) AT (p — pPu)

((ATA) ™ ATu) o7 + (ATA) ' AT, (16)
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An expression for the normal derivative can then be constructed

g—:: =0 -Vp=— (ﬁT (ATA)™ ATu) o + 0T (ATA) ATy

= wPpP + Zwiapi. (17)

The last step follows from the association of the components of the vector ¢
with the neighboring state values, ¢;, and the matrix product a” (ATA) ' ATu
with the scalar w?.

We therefore have two formulae for approximating the normal derivative,
both of which are linear in ¢?. Consequently, we are able to solve the jump
conditions for %B by solving a two-by-two system directly. From these we
calculate boundary fluxes FZ, which are used in performing Gauss-Seidel
relaxation in each phase. In order that the matching conditions are always

satisfied, boundary fluxes are recalculated after every step in relaxing towards

the solution of our elliptic equation.

3. Multigrid solver considerations

In order to speed the elliptic equation solver, the relaxation step is em-
bedded in a multigrid solver. This also has the advantage of being highly
compatible with adaptive mesh refinement. Use of a multigrid solver involves
progressive coarsening of the problem domain, and the geometry along with
it. Generally, the further one coarsens in multigrid, the larger the benefit
in terms of solver efficiency. The extent to which one can coarsen is lim-
ited, however, by the need for an adequate number of cells with which to
create a stencil for estimating the flux. This domain coarsening can lead to

pathological cases, which we describe and outline our approach to below.
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1. Failure of the least squares stencil
In this case, we use least squares, but instead of including only those
nearest neighbors within the same quadrant (octant in 3D) as the nor-
mal vector, we include all nearest neighbors to which there exists a
monotone path from the VoF in question.
We find that this method allows coarsening to levels not possible using
the least squares stencil as described above. Moreover, it is useful in
preserving symmetry in cases where the boundary normal is along a
cardinal direction. It has little effect on the overall accuracy of the
scheme, which remains second order in our tests.

2. VoF's missing one or more stencils
Occasionally, at some level in the coarsening, no stencil is available
on one or both sides of the interface, and we are left with a choice.
One option is to stop coarsening and back up to a finer lever at which
stencils are available. Another is to fashion a suitable approximation
for these under-resolved cases.
In the case that one side of an interface is without a stencil, we are
unable to solve the matching conditions in the manner outlined in Sec-
tion 2.1. Therefore, we approximate the gradient on the side with the
stencil directly, taking a simple finite difference using the available cells

in that material,

(Vo) = £F28—22, (18)

where €, is the unit vector in the s direction, and either the backward-
or forward-difference is used based on the availability of data ¢. We

arrive at an estimate of the flux in material p by using the normal to

14



. B, ~ . . . .
the interface, g—i P — hB? . Vy. Using this estimate of the flux in

phase p, we then calculate the jump in phase p':

0pP" 1 [ 9pPP
i (ﬁpa—jj +gN). (19)

on o1
Cases where there is no available stencil on either side of a material
interface are rare, even when the geometry is quite under-resolved.
In practice, we avoid them by limiting the degree of coarsening the
multigrid solver performs, which in turn limits the extent of under-
resolution of the geometry. This has the potential to make multigrid
less efficient. However, we show in Section 5.2 that it remains efficient
across a range of resolutions, even for quite complex geometries.
. Cells with multiple VoFs
Coarsening of the domain for multigrid can also produce cells with
more than one volume of fluid (VoF) of a given phase. One very simple
example is an inclined ellipsoid with a large axis ratio. With enough
coarsening, the minor axis of the ellipsoid becomes smaller than the
grid spacing, leading to a situation like that pictured in Figure 2. In
the figure on the right, the VoF in the interior has two irregular faces.
Fluxes, and therefore normal derivatives, must be calculated for each
separately. These are used to calculate an irregular flux for the VoF,
which we label with cell index i and VoF index ~. For the sake of
efficiency and simplicity, however, we do not store all values of the flux
FPB and material aperture o for a given VoF. Instead we store a single

flux and a single aperture from which the update can be calculated.
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Figure 2: Example of a coarsening resulting in multiple VoFs in a single rectangular
control volume. On the left, the cells in black contain a single VoF of each material. After
coarsening, the grid is as on the right, with the cell outlined in black having two VoF's of

one material, and a single VoF of the other material.

16



Following Equation (8), we can calculate this single flux as

B,pp' ~ B,pp’ B,p [ B.pp’
A B 2op'n Qi Wiy - FPP (300
2 v
S — (20)
Oniy Qi

B

Here the denominator ;> is an average material face aperture. The

total flux into the VoF is calculated using this single value

a B
Bp -B 09
R =atge (21)

recovering the correct flux through all irregular faces.

4. Time discretization and algorithm outline

We follow [14] in using a second order in time Runge-Kutta solver [18] in

solving the heat equation. The time discretization is

T = (L= L) ™ (= el) ™ (4 L) T+ (T4 i) f753 ] (22)

with the p parameters chosen so as to simultaneously achieve second order

accuracy and L stability.

The heat equation algorithm proceeds as follows, omitting details of the

multigrid operations:

1. Grid generation

(a) Calculation of geometric quantities

(b) Calculation of stencil weights

2. Heat equation update step solve

(a) Calculate source term at half-timestep, ™2

(b) Apply 4 operator

17



(c) Apply ps operator
(d) Solve elliptic problem for uy operator
i. Calculate boundary fluxes
ii. Single relaxation step in each material
iii. Repeat (i) and (ii) to convergence

(e) Solve elliptic problem for p; operator

Elliptic solver operations form the bulk of the computational work. In
order to speed convergence, we plan to investigate the need for performing
step (i) before every relaxation step. We leave this investigation for future

work, however.

5. Numerical results

5.1. 2-D tests of solution error for Poisson’s equation on fixed and adaptive

meshes

As a 2-D test of the elliptic solver with a non-trivial geometry, we solve
the Poisson equation SAp = p on a single grid, with two materials whose
boundary is a rhodonea curve, originally due to Li [19]. The equation for

this curve in polar coordinates is
r =719+ 7 sin (wh), (23)

where ry and r; are the inner- and outer-radii respectively, and w the number
of lobes of the rhodonea (See Figure 3). Our tests use ro = 0.5, r = 0.1,
and w = 5, as in previous work. Note that the rhodonea is slightly offset

from the origin of the domain, being centered at z = y = 0.2/1/20. We label

18
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Figure 3: Rhodonea geometry, outlined in white, showing the solution to Poisson’s equa-

tion inside and outside, with 3~ = 10° and g+ = 10'.
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quantities on the interior of the rhodonea, the inclusion region, with a minus,
such as 7. Similarly for the exterior, using 5%.

This example is a good test of the EB methodology due to the high
curvature near the inner radius. For the purpose of comparison, we use
reproduce Example 2 of [11]. Here, as there, a range of coefficient ratios,

B~/B3T =1073,107%, and 10% was run. The exact solution is given by

4 log(2
(pem&:r + ¢o log(2r) (24)
2

3+
r
Qpem’_ = o (25>
g
from which we calculate the solution error e; = k; (p; — ¢§*). Plots of the
norm of the solution error and the error in the magnitude of the gradient of
the solution (again weighted by volume fraction) are shown in Figure 4. Both
are second order accurate in 1-, 2-, and max-norm. Especially noteworthy is
the second order convergence of the gradient error, which compares favorably
with [11].

The second test uses the same rhodonea geometry, and targets the adap-
tive mesh refinement (AMR) capabilities of Chombo in the multi-material
context. It involves a quadratic source in the center of the rhodonea

4
b= (a—a?) (26)
(
2 [a® (cqa® + cz3a® + caa® + c1a + cp)

o —(C4+C3+02+01+CO

, (27)

otherwise

)
+clog(ry)] ifa<1
5 (clog(r))

a problem adapted from [14]. Here a = r/ry and we use a value of 1y = 0.2.

— 1 _ 4 6 _ 4
The constants are ¢ = 0o "9 ts— 7+

1

_ 1 _ 4 _ 6
g0 C0 = 360 C1 = —79 C2 = G
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Figure 4: Solution error convergence for the rhodonea example, following Oevermann et al.
Top: Lo norm of the error in the solution. Note that L; and Lo norms also converge
at second order. Bottom: L., norm of the 2e%ror in the magnitude of the gradient of the

solution. Here again, the L; and Ls norms also converges at second order.



c3 = _5%’ and ¢4 = Wlo' We use a modest ratio of 37/87 = 1/10. The
matching conditions at the boundary are homogeneous.

Our strategy is to use a single level run to verify the results from an
AMR run, in this case with two levels of refinement. With effective gridding,
normed errors in the AMR case should be very similar to those of the single
grid case with equivalent resolution. We found it simplest to cover the inner
(r < ro) region of the rhodonea entirely with the level two and three grids
in order to ensure that the region with the largest solution gradient is at the
highest resolution. Level two and level three grids also cover the boundary,
which is the other large error region. (An alternate strategy for control-
ling grid placement, Richardson error extrapolation, is more algorithmically
complex, and is left for future work.)

Successive AMR runs increase the base level resolution while keeping the
number of levels fixed. By comparing the error from these runs with that
of single grid runs with equivalent effective resolution, we are able to verify
that AMR is not introducing spurious errors. A plot of the error for a Rjog
base grid (effective resolution Rsj2) is shown in Figure 5, top. As shown in
the bottom plot, the AMR results are second order. Just as importantly, the

magnitude of the normed errors are only marginally higher than those of the

single grid calculations.

5.2. 2-D and 3-D tests of multigrid solver efficiency

Here we test the performance of the multigrid solver for a range of grid
sizes and beta ratios. In this case an ellipsoid geometry that is easily gener-
alized to three dimensions, as opposed to a 2-D rhodonea geometry, is used.

There is no refinement of the domain using AMR. We measure the number
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Figure 5: Top: Plot of the log of the magnitude of the error for the AMR test with
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of multigrid iterations required to reduce the Ly norm of the error by ten or-
ders of magnitude. Optimally, the iteration count is independent of the grid
size. In Figure 6 we plot the iteration count versus grid size for resolutions
in the range R3o to Riges in the 2-D case, and Rig to Rase in the 3-D case.
The figure shows results for beta ratios from 3=/87 = 1073 to 103. Though
the iteration count increases somewhat with increasing grid size, there is a
stronger dependence on beta ratio, particularly when the latter is greater
than one. The difficulty of solving problems with large beta inclusions is
well documented in the literature; see [11, 7]. We have explored this issue
further by running over a larger range in beta ratios for a single resolution
— Ry9g in 2-D and Rgy in 3-D. As we show in Figure 7, the iteration count
reaches a maximum at a ratio around 102, and decreases thereafter. The
multigrid solver performs better than might naively be expected as the beta
ratio increases, being well suited for problems with high beta inclusions of

10%, and likely even higher.

5.3. 3-D test of solution error for Poisson’s equation

Our test of solution error convergence in three dimensions uses a sphere
of radius R = 0.392, and a source and exact solution proportional to an

eigenfunction of the Laplacian in spherical coordinates:

plr) = —2 ) (28)
S50 (1) — %Smfnkr) i (29)

The constant ¢ is chosen such that [p°"] = 0, giving homogeneous matching

conditions at the material boundary. Results for solution error are shown
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in Figure 8 and Figure 9. Convergence is second order, independent of the

norm and beta ratio chosen.

5.4. 3-D tests of solution error for the heat equation

In order to test the accuracy of our multi-material method for the heat
equation, we once again use the method of manufactured solutions. For the
desired exact solution ¢°® of Equation (2) in material p we again choose
for the spatial component the trigonometric eigenfunction of the spherical
Laplacian from Section 5.3. Time dependence is added via an exponential
decay term. The source term f? is chosen such the heat equation is satisfied.
The exact solution and source are of the form

sin (kr)
r

PP =g e+ (30)

sin (kr)
r

fP = (KPk* — ) e, (31)

In all cases we choose k = 2m. The interface between materials is also a
sphere of radius R = 0.392.

Due to the difficulty of choosing solutions such that the matching condi-
tions Equation (10) are simultaneously zero, we test each in turn. In other
words, we perform one test with a homogeneous Dirichlet boundary, where
the solution in each phase is the same while the jump in the flux varies in
both time and space. The other test uses a homogeneous Neumann boundary,
where kTt = K7~ so that the flux is continuous across the boundary.

For the homogeneous Dirichlet case we use ¢; = ¢ = 10, ¢; = ¢ = 100,
and v = max(k',x7). All simulations were run for the same number of
timesteps, to a final time such that vty = 0.2. For the homogeneous

Neumann case we use cg = 10/x%, with all other parameters the same as in
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the homogeneous Dirichlet case. Results for solution error convergence are

shown in Figure 10, and confirm second order accuracy for both cases.

5.5. Conjugate heat transfer in a nuclear reactor fuel bundle

Finally, we test the multi-material method on a more realistic example,
inspired by nuclear reactor core simulation. The geometry consists of a set
of nineteen coaxial reactor fuel pins. Each pin is wrapped in a helical wire.
Outside of the fuel pin is a moderator, in this case a stationary material with
thermal properties equivalent to liquid sodium. The geometric parameters
used closely follow [20], and are listed in Table 1.! All parameters are in
CGS units. The source was a Gaussian that falls off with distance from the
pin axis,

S 2 /.2
f—pC—P—Fexp (—r2in/s%) - (32)

The source strength F =25 x 10, and the width parameter s = 1/4. This
choice provides a steady-state power density of approximately 10> W/m?.
Initially, the temperature is uniform at 600 K. The top and bottom domain
boundaries were adiabatic (%—Z = 0), while the others were kept constant at
600 K. The simulation was run using timesteps of d¢t = 0.1 to a final time
of t = 51.0, at which point the heat flux through the boundary had reached
a steady state. Figure 11 shows the temperature distribution at this final

time.

'The value of the thermal diffusivity in the pins was inferred. Specifically, the sodium
(moderator) thermal conductivity listed in [21] was multiplied by the ratio of pin to mod-

erator conductivities used in [10].
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Figure 11: Temperature distribution at steady state for a 19-pin fuel bundle. The interfaces
between fuel pin and moderator are represented by semi-transparent surfaces. A slice of
the solution inside the third row of pins is shown. The solution on the exterior is shown

in a slice at the bottom of the domain.
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Name value Source

horizontal domain size 12 None
pin radius 0.800 [20]
wire radius 0.103 [20]

pin-wire separation 0.478 None

pin length 3.000 None
wire separation 20.0 20]
pin+wire thermal diffusivity 0.9007 [10]
moderator density 0.852 [21]
moderator specific heat | 1.2768 x 107 | [21]
moderator thermal diffusivity 0.6251 [21]

Table 1: Table of parameters used in fuel bundle test.
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6. Conclusions

We have presented an approach to solving elliptic and parabolic equa-
tions using Cartesian grid embedded boundary methods which is second or-
der accurate and computationally efficient. The former was achieved using
the usual five-point stencil in cells not intersected by the boundary, and a
quadratic approximation to the state at the interface otherwise. In order to
efficiently solve elliptic equations, we use geometric multigrid. This necessi-
tated treatment of a number of special cases that arise when the geometry
is under-resolved.

The method was also shown not to suffer from condition-based solver
convergence issues. It remains stable for ratios up to 10°. Moreover, we
find that the rate of convergence improved at high enough material contrast
ratios, a good indicator that it will remain stable and efficient beyond those
tested.

The method was tested on a complex nuclear reactor fuel bundle geometry
that underscored the flexibility of the grid generation approach. This, along
with the parallel computing and AMR capabilities leveraged from Chombo,
are essential to approaching large scale problems. In the future, higher order
extensions of the underlying method will be explored using both the existing
capabilities for high order geometric representations [17] and by extending

the stencil approximations to higher order.
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