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Abstract

We present a method for solving Poisson and heat equations with discon-

tinuous coefficients in two- and three-dimensions. It uses a Cartesian cut-

cell/embedded boundary method to represent the interface between materi-

als, as described in Johansen & Colella (1998). Matching conditions across

the interface are enforced using an approximation to fluxes at the boundary.

Overall second order accuracy is achieved, as indicated by an array of tests

using non-trivial interface geometries. Both the elliptic and heat solvers are

shown to remain stable and efficient for material coefficient contrasts up to

106, thanks in part to the use of geometric multigrid. A test of accuracy

when adaptive mesh refinement capabilities are utilized is also performed.

An example problem relevant to nuclear reactor core simulation is presented,

demonstrating the ability of the method to solve problems with realistic

physical parameters.
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1. Introduction

We consider elliptic and parabolic problems in regions with two materials,

each of which occupies a bounded subset Ωp, p = +,−, of the overall domain

Ω =
⋃

p Ωp. One region usually encloses the other; in that case we refer to

the inclusion, or interior region, by Ω− and the exterior region by Ω+. At

the boundary δΩ± between materials, jump conditions on the solution ϕ and

flux FB are specified

[

ϕB
]

= ϕB,+ − ϕB,− = gD (x, t)
[

FB · n̂B
]

= FB,+ · n̂B − FB,− · n̂B = gN (x, t) . (1)

Here n̂B is the normal to the boundary, and the functions gD and gN describe

the magnitude of the jump at each point in time and space. Our method

applies to the heat equation in two materials,

∂tϕ = κp∆ϕ + f on Ωp, ϕ (x, 0) = ϕ0 (x) , (2)

subject to the above jump conditions at the interface. In this case, as well

as in the elliptic equations to which the method is applied, the flux FB is

proportional to the material coefficient. While this coefficient is constant

within each material, it is discontinuous across the interface.

There are a number of schemes for handling elliptic and parabolic prob-

lems of this type extant in the literature. Finite difference schemes for fixed

boundaries, of the type pioneered by Shortley & Weller [1], have been greatly

improved upon in the intervening years. Most importantly in the context of
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this work, they have been extended to handle discontinuous jumps in the

form of Equation (10). Immersed boundary methods, modifications of the

method first presented by Peskin [2], discretize a delta-function source term

on the boundary, retaining the symmetric form of the linear system. Im-

mersed interface methods [3] explicitly incorporate the jump condition into

the underlying finite difference stencil coefficients. This results in a scheme

that more accurately represents the jump conditions, at the expense of con-

siderable additional complexity and the loss of symmetry in the underlying

linear system. Finally in the context of finite difference schemes, ghost fluid

methods [4] use a type of analytic continuation of the solution. A ghost

fluid, residing in the regions ostensibly outside the solution domain, is used

to explicitly enforce the matching conditions. As originally formulated, the

method was first order accurate. It has been extended to second order ac-

curacy for boundaries with continuous second derivatives [5]. They have the

advantage of retaining a symmetric system, allowing the use of a wider range

of fast linear solvers.

Outside the realm of finite difference methods, integral methods recast

the elliptic PDE via potential theory as integral equations. Fast integral

solvers can often be utilized against this class of problem; these generally fall

into two categories. One method involves the use of a fast Poisson solver on

a simple (e.g. Cartesian) enclosing domain, plus the application of a suitable

correction at the boundary [6]. The second combines a fast (e.g. multipole or

FFT) method and an iterative solver. In either case, conditioning issues can

arise in problems with large discontinuities in the material coefficient [7], ne-

cessitating a modification of the underlying integral equation representation.
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Nevertheless, these methods are efficient in a wide variety of problems.

Our method is based on a finite volume approach to the spatial discretiza-

tion of elliptic equations. The method is conservative, a distinct advantage

in certain classes of problems. For low-Mach flows with heat transfer, for

instance, conservative schemes avoid unphysical results arising in marginally

resolved or under-resolved situations [8, 9].

Finite volume methods for interface problems encompass a variety of ap-

proaches. In the context of conjugate heat transfer in complex geometries, the

overlapping grid method of Henshaw & Chand [10] decomposes the domain

into a number of sub-domains. The grid on each sub-domain is boundary

fitting, an advantage that comes at the expense of the loss of conservation.

Each sub-domain can utilize a solver specific to the physics in it.

Oevermann et al [11, 12] present a finite volume method for variable and

discontinuous coefficient elliptic problems in two- and three-dimensions. In 3-

D, it relies on tri-linear approximations to the solution within each Cartesian

control volume to discretize the integral form of the divergence theorem in

a finite element fashion. Small volume cells are handled via an asymptotic

approach. The method exhibits local and global second order accuracy on

this class of problems.

Our work follows in the steps of the work in [13, 14, 15] in using pure

finite-volume schemes for elliptic and parabolic equations with embedded

boundaries (EB). The first step in using Cartesian EB methods is grid gen-

eration, which has been studied extensively using a number of different rep-

resentations of the geometry. Surface triangulations [16] are widely used,

particularly in engineering contexts involving extremely complex geometries.
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Our method uses an implicit function representation [17] that provides dis-

cretizations of complex geometries accurate to arbitrary order in a straight-

forward manner.

The main shortcoming in previous Cartesian EB methods, insofar as their

application to multi-material problems, lies in their use of prescribed bound-

ary conditions at the EB. A Neumann interface gave boundary fluxes directly,

while Dirichlet boundary conditions at the EB necessitated defining a stencil

for calculating fluxes at the boundary using data at neighboring cells. In the

multi-material context boundary conditions at the interface are not directly

prescribed, but instead constrained by matching conditions on the jump in

the solution and flux across it. The present work extends the EB methodol-

ogy to handle such jump conditions, and thereby solve multi-material Poisson

and heat equations with a discontinuity in the material coefficient at the in-

terface between the two. Like previous work, it maintains global second order

accuracy. By treating special cases related to under-resolved geometries, like

the presence of multiple interfaces within a Cartesian control volume, we

are able to use geometric multigrid methods for efficient solution of elliptic

equations. Moreover, our use of the Chombo software infrastructure provides

two important capabilities from a computational efficiency standpoint. The

first is adaptive mesh refinement, which is crucial in many problems involv-

ing widely separated spatial scales. Second, it provides well tested parallel

computing capabilities, which is crucial in approaching real-world problems.

Our time discretization of this equation necessitates solving a set of el-

liptic equations during each step forward in time. Specifically, we solve the
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Helmholtz equation

(αp + βp∆) ϕ = ρ, (3)

where αp and βp are the material coefficients, subject to jump conditions

across the boundary δΩ±. We first describe the elliptic algorithm, starting

with the spatial discretization in Section 2. This is followed by a treatment

of special considerations for the use of geometric multigrid, in Section 3. An

outline of the overall algorithm is given in Section 4.

Descriptions of the tests used to validate the method follow the algorith-

mic sections. These include two and three dimensional solution error tests

confirming second order accuracy for the Poisson equation in Section 5.1 and

Section 5.3. Tests of the efficiency of the multigrid solver in 2-D and 3-D

are described in Section 5.2. The final set of test are of accuracy for the

heat equation in 3-D, in Section 5.4. We conclude with results more realis-

tic problem, showing heat conduction in a nuclear reactor fuel assembly, in

Section 5.5.

2. Spatial Discretization of the Laplacian

The underlying discretization of space is given by rectangular control

volumes on a Cartesian grid: Υi =
[(

i − 1
2
u
)

h,
(

i + 1
2
u
)

h
]

, i ∈ Z
d, where

d is the dimensionality of the problem, h is the mesh spacing, and u is the

vector whose entries are all ones. Each material domain Ωp and material

interface δΩpp′ is represented by its intersection with the Cartesian grid. In

general, a given Cartesian control volume Υi may be intersected by one or

more material interfaces. Consequently, there may be multiple p-material

control volumes associated with each Υi; see Figure 1. In the case that
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Figure 1: A 2-D Cartesian control volume, and its associated material control volumes.

In this case the volume is crossed by two material interfaces. The top region is in the

p = + phase, the region below it in phase p′ = −, and the bottom region in phase p = +

again. Each material control volume is labeled by the Cartesian volume containing it, i,

its phase p and, if there are multiple volumes of that phase in the Cartesian volume, the

index γ, as V p
i,γ . Interfaces between material control volumes are shown as solid grey lines,

whose areas are labeled AB . Non-zero faces of the material control volumes, lying on the

boundary of the Cartesian control volume, are labeled Ap

i±
1

2
ês,γ

.
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there is more than one p-material control volume in the Cartesian control

volume, we index them by γ = 0, 1, . . .. Each p-material control volume

is denoted by V p
i,γ, and each face by Ap

i± 1

2
es,γ

. The latter is defined as the

intersection of Ωp with δΥi, the boundary of the control volume Υi given by

the coordinate planes
{

x : xs =
(

is ± 1
2
ês

)

h
}

, where ês is the unit vector

in the s direction. Finally, associated with each Cartesian control volume

through which one or more material boundaries passes is a boundary face, or

interface, AB,p
i

(

V p
i,γ, V

p′

i,γ′

)

= dV p
i,γ ∩ dV p′

i,γ′ ⊂ δΩpp′ with normal n̂
B,p
i,γγ′ facing

out of material p. We assume that each material interface connects a single

p-material control volume to a single p′-material control volume. In other

words, each p-material interface must be connected in a one-to-one fashion

to another face in material p′ 6= p having the same spatial location and area

fraction, but opposite normal (i.e.
∣

∣

∣
AB,p

i

(

V p
i,γ, V

p′

i,γ′

)
∣

∣

∣
=

∣

∣

∣
AB,p′

i

(

V p′

i,γ′, V
p
i,γ

)
∣

∣

∣

and n̂
B,p
i,γγ′ = −n̂

B,p′

γ′γ ).

The construction of our finite-volume method follows McCorquodale et al

[14], with suitable modifications for multi-material equations. Based on the

description above, we construct geometric quantities:

• The dimensionless volumes/areas of each p-material control volume/face.

Volume fractions νp
i,γ =

∣

∣V p
i,γ

∣

∣ h−d, face apertures αp

i+ 1

2
es,γ

=
∣

∣

∣
Ap

i+ 1

2
es,γ

∣

∣

∣
h−(d−1),

and boundary apertures αB,p
γγ′ =

∣

∣

∣
AB

(

V p
i,γ, V

p′

i,γ′

)∣

∣

∣
h−(d−1)
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• The locations of centroids and average outward normal to the boundary

x
p
i,γ =

1
∣

∣V p
i,γ

∣

∣

∫

V
p

i,γ

x dV (4)

x
p

i+ 1

2
es,γ

=
1

∣

∣

∣
Ap

i+ 1

2
es,γ

∣

∣

∣

∫

A
p

i+1
2
es,γ

x dA (5)

x
B,pp′

i,γγ′ =
1

∣

∣

∣
AB

(

V p
i,γ, V

p′

i,γ′

)
∣

∣

∣

∫

AB
“

V
p

i,γ
,V

p′

i,γ′

”

x dA (6)

n̂
B,p
i,γγ′ =

1
∣

∣

∣
AB

(

V p
i,γ, V

p′

i,γ′

)
∣

∣

∣

∫

AB
“

V
p

i,γ
,V

p′

i,γ′

”

n̂B,p dA, (7)

where n̂B,p is the normal, facing outward from phase p, to δΩpp′, defined

at each point on δΩpp′.

Finite volume methods are based on the divergence form of the underly-

ing equation, which we now recast in terms of the above defined geometric

quantities. For the Poisson (heat) equation, the divergence form is ∇·F = ρ

(∇·F = ∂tϕ−f), with F = β∇ϕ (F = k∇ϕ). Our conservative discretization

for the divergence operator in each material control volume V p
i,γ is

(∇ · F)p
i,γ ≈ 1

V p
i,γ

∫

V
p

i,γ

∇ · F dV =
1

V p
i,γ

∫

δV
p

i,γ

F · n̂ dA

≃ 1

νp
i,γh









∑

±=+,−

d
∑

s=1

±αp

i+ 1

2
es,γ

F s,p
(

x
i+ 1

2
es,γ

)

+
∑

p′ 6=p
γ′

αB,pp′

i,γγ′ F B,p
(

x
B,pp′

i,γγ′

)









.

(8)

Here F s,p(x) is the flux from the p-material through the face with normal

es at position x, and F B,p is the corresponding flux through the material

boundary. So, for example, in the material control volume at upper-right in
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Figure 1, the divergence is

(∇ · F)+
i,0 =

1

ν+
i,0h

[

α+
i− 1

2
e0,0

F 0,+
(

x
i− 1

2
e0,0

)

− α+
i+ 1

2
e1,0

F 1,+
(

x
i+ 1

2
e1,0

)

+αB,+−
i,00 F B,+

(

x
B,+−
i,00

)]

(9)

Thus, with the discretization in place, we need to calculate fluxes at all faces

and boundaries in order to update the governing equation.

2.1. Flux calculation and enforcing multi-material matching conditions

The Laplacian operator in the Poisson (heat) equation implies a flux Fp =

βp∇ϕ (Fp = κp∇ϕ). Calculation of fluxes at faces Ap

i+ 1

2
es,γ

is a relatively

straightforward matter of linearly interpolating fluxes at face centers to the

face centroids x
p

i+ 1

2
es,γ

; an example is given in [14], Equations (6) and (7). For

interfaces AB, the process is more involved. First let us introduce simplified

notation,

n̂B,p · F = n̂B,p · (β∇ϕ)B,p ≡ βp∂ϕ

∂n

B,p

. (10)

In the single-material case [14, 15], Neumann or Dirichlet boundary condi-

tions are prescribed at the interface. In the former case, the required inter-

face flux FB can be calculated directly. In the Dirichlet case, the state at

the interface, ϕB, and at neighboring cells is used to approximate the normal

derivative at the interface ∂ϕ

∂n
. In the multi-material case, neither Dirichlet

nor Neumann boundary conditions at the interface are known a priori. In-

stead, we use the matching conditions, Equation (10), along with equations

approximating the normal derivative in each material, in order to calculate

the boundary flux in Equation (8).

We illustrate the flux determination for the case of the Poisson equation

in two materials. (The same procedure applies to the Helmholtz equation
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solves done in the heat equation update.) First, we rewrite the second (flux)

jump condition of Equation (10) as

β+∂ϕ

∂n

B,+

− β−∂ϕ

∂n

B,−

= gN . (11)

The states in either material at the interface, ϕB, and normal derivatives,

∂ϕ

∂n

B
, are not known. Our method for closing this set of equations is to use

an approximation to the normal derivative of the form

∂ϕ

∂n

B,p

= wB,pϕB,p +
∑

i
i∈Ωp

wiϕi + O(hq), (12)

where q is the order of approximation. The weight wB associated with the

unknown boundary state, and wi associated with the known states in neigh-

boring cells depend on the geometric quantities defined in Equations (4-7).

In general, a second order approximation [13] to the normal derivative is

used. In cases where there are insufficient neighboring cells ϕi for a second

order approximation (e.g. due to an under-resolved geometry, or proximity

to the domain boundary), a first order approximation [15] is used.

Since we are using two different approximation schemes it remains to

show here that, independent of which combination of approximation schemes

is used on either side of the interface, the matching conditions can still be

enforced. We do so by showing that both can be recast in the form Equa-

tion (12) given above. Clearly, given its linear dependence on ϕB, this allows

a simple direct solution of the four-by-four system for ϕB and ∂ϕ

∂n

B
on both

sides of the material boundary.

First, consider the second-order stencil based on the quadratic interpola-

tion of two values, ϕ1 and ϕ2, at distances d1 and d2 along the normal to the
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interface,

∂ϕ

∂n

B

=
1

d2 − d1

(

d2

d1

(

ϕB − ϕ1

)

− d1

d2

(

ϕB − ϕ2

)

)

. (13)

The two state values ϕ1 and ϕ2 depend on geometric quantities and the states

in neighboring cells, but not ϕB. Therefore, it is a simple matter to rewrite

this equation in the form above

∂ϕ

∂n

B

=
1

d2 − d1

(

d2

d1
− d1

d2

)

ϕB +
1

d2 − d1

(

d1

d2
ϕ2 −

d2

d1
ϕ1

)

(14)

= wBϕB +
∑

i∈Ω1

wiϕi +
∑

i∈Ω2

wiϕi, (15)

where Ω1 and Ω2 correspond to the domain of dependence used in calculating

ϕ1 and ϕ2. This is clearly in the form of Equation (12).

In the alternative case, when a suitable second order approximation is not

available, we use the Schwartz et al prescription for calculating the normal

derivative, based on least squares estimation. This method involves choosing

a suitable set of neighboring points - three in the case of 2-D, and seven in

3-D - for performing least squares estimation. A matrix of displacements

of these points from the material interface is defined, (A)sµ = δxµ
s , where µ

indexes the points and s indexes direction. Next define a vector of differences

between the state at each point, ϕµ, and the state at the boundary, ϕB:

(δϕ)µ = (ϕ)µ − ϕB. We wish to solve A∇ϕ = δϕ in order to obtain an

estimate for ∂ϕ

∂n
= n̂ · ∇ϕ. We compute the least squares estimate

∇ϕ ≈
(

A
T
A

)−1
A

T δϕ =
(

A
T
A

)−1
A

T
(

ϕ − ϕBu
)

=
(

(

A
T
A

)−1
A

Tu
)

ϕB +
(

A
T
A

)−1
A

Tϕ. (16)
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An expression for the normal derivative can then be constructed

∂ϕ

∂n
= n̂ · ∇ϕ = −

(

n̂T
(

A
T
A

)−1
A

Tu
)

ϕB + n̂T
(

A
T
A

)−1
A

T ϕ

= wBϕB +
∑

i

wiϕi. (17)

The last step follows from the association of the components of the vector ϕ

with the neighboring state values, ϕi, and the matrix product n̂T
(

A
T
A

)−1
A

Tu

with the scalar wB.

We therefore have two formulae for approximating the normal derivative,

both of which are linear in ϕB. Consequently, we are able to solve the jump

conditions for ∂ϕ

∂n

B
by solving a two-by-two system directly. From these we

calculate boundary fluxes FB, which are used in performing Gauss-Seidel

relaxation in each phase. In order that the matching conditions are always

satisfied, boundary fluxes are recalculated after every step in relaxing towards

the solution of our elliptic equation.

3. Multigrid solver considerations

In order to speed the elliptic equation solver, the relaxation step is em-

bedded in a multigrid solver. This also has the advantage of being highly

compatible with adaptive mesh refinement. Use of a multigrid solver involves

progressive coarsening of the problem domain, and the geometry along with

it. Generally, the further one coarsens in multigrid, the larger the benefit

in terms of solver efficiency. The extent to which one can coarsen is lim-

ited, however, by the need for an adequate number of cells with which to

create a stencil for estimating the flux. This domain coarsening can lead to

pathological cases, which we describe and outline our approach to below.
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1. Failure of the least squares stencil

In this case, we use least squares, but instead of including only those

nearest neighbors within the same quadrant (octant in 3D) as the nor-

mal vector, we include all nearest neighbors to which there exists a

monotone path from the VoF in question.

We find that this method allows coarsening to levels not possible using

the least squares stencil as described above. Moreover, it is useful in

preserving symmetry in cases where the boundary normal is along a

cardinal direction. It has little effect on the overall accuracy of the

scheme, which remains second order in our tests.

2. VoFs missing one or more stencils

Occasionally, at some level in the coarsening, no stencil is available

on one or both sides of the interface, and we are left with a choice.

One option is to stop coarsening and back up to a finer lever at which

stencils are available. Another is to fashion a suitable approximation

for these under-resolved cases.

In the case that one side of an interface is without a stencil, we are

unable to solve the matching conditions in the manner outlined in Sec-

tion 2.1. Therefore, we approximate the gradient on the side with the

stencil directly, taking a simple finite difference using the available cells

in that material,

(∇ϕ)s = ±ϕi±ês
− ϕi

h
, (18)

where ês is the unit vector in the s direction, and either the backward-

or forward-difference is used based on the availability of data ϕ. We

arrive at an estimate of the flux in material p by using the normal to
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the interface, ∂ϕ

∂n

B,p
= n̂B,p · ∇ϕ. Using this estimate of the flux in

phase p, we then calculate the jump in phase p′:

∂ϕ

∂n

B,p′

=
1

βp′

(

βp∂ϕ

∂n

B,p

+ gN

)

. (19)

Cases where there is no available stencil on either side of a material

interface are rare, even when the geometry is quite under-resolved.

In practice, we avoid them by limiting the degree of coarsening the

multigrid solver performs, which in turn limits the extent of under-

resolution of the geometry. This has the potential to make multigrid

less efficient. However, we show in Section 5.2 that it remains efficient

across a range of resolutions, even for quite complex geometries.

3. Cells with multiple VoFs

Coarsening of the domain for multigrid can also produce cells with

more than one volume of fluid (VoF) of a given phase. One very simple

example is an inclined ellipsoid with a large axis ratio. With enough

coarsening, the minor axis of the ellipsoid becomes smaller than the

grid spacing, leading to a situation like that pictured in Figure 2. In

the figure on the right, the VoF in the interior has two irregular faces.

Fluxes, and therefore normal derivatives, must be calculated for each

separately. These are used to calculate an irregular flux for the VoF,

which we label with cell index i and VoF index γ. For the sake of

efficiency and simplicity, however, we do not store all values of the flux

F B and material aperture αB for a given VoF. Instead we store a single

flux and a single aperture from which the update can be calculated.
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Figure 2: Example of a coarsening resulting in multiple VoFs in a single rectangular

control volume. On the left, the cells in black contain a single VoF of each material. After

coarsening, the grid is as on the right, with the cell outlined in black having two VoFs of

one material, and a single VoF of the other material.
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Following Equation (8), we can calculate this single flux as

∂ϕ

∂n

B,p

i,γ
=

∑

p′ 6=p
γ′

αB,pp′

i,γγ′ n̂
B,pp′

i,γγ′ · FB,p
γ

(

x
B,pp′

γγ′

)

ᾱB
i,γ

. (20)

Here the denominator ᾱB
i,γ is an average material face aperture. The

total flux into the VoF is calculated using this single value

F B,p
i,γ = ᾱB

i,γ

∂ϕ

∂n

B

i,γ
(21)

recovering the correct flux through all irregular faces.

4. Time discretization and algorithm outline

We follow [14] in using a second order in time Runge-Kutta solver [18] in

solving the heat equation. The time discretization is

T n+1 = (I − µ1L)−1 (I − µ2L)−1
[

(I + µ3L) T n + (I + µ4L) fn+ 1

2

]

, (22)

with the µ parameters chosen so as to simultaneously achieve second order

accuracy and L0 stability.

The heat equation algorithm proceeds as follows, omitting details of the

multigrid operations:

1. Grid generation

(a) Calculation of geometric quantities

(b) Calculation of stencil weights

2. Heat equation update step solve

(a) Calculate source term at half-timestep, fn+ 1

2

(b) Apply µ4 operator
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(c) Apply µ3 operator

(d) Solve elliptic problem for µ2 operator

i. Calculate boundary fluxes

ii. Single relaxation step in each material

iii. Repeat (i) and (ii) to convergence

(e) Solve elliptic problem for µ1 operator

Elliptic solver operations form the bulk of the computational work. In

order to speed convergence, we plan to investigate the need for performing

step (i) before every relaxation step. We leave this investigation for future

work, however.

5. Numerical results

5.1. 2-D tests of solution error for Poisson’s equation on fixed and adaptive

meshes

As a 2-D test of the elliptic solver with a non-trivial geometry, we solve

the Poisson equation β∆ϕ = ρ on a single grid, with two materials whose

boundary is a rhodonea curve, originally due to Li [19]. The equation for

this curve in polar coordinates is

r = r0 + r1 sin (ωθ) , (23)

where r0 and r1 are the inner- and outer-radii respectively, and ω the number

of lobes of the rhodonea (See Figure 3). Our tests use r0 = 0.5, r1 = 0.1,

and ω = 5, as in previous work. Note that the rhodonea is slightly offset

from the origin of the domain, being centered at x = y = 0.2/
√

20. We label

18



Figure 3: Rhodonea geometry, outlined in white, showing the solution to Poisson’s equa-

tion inside and outside, with β− = 100 and β+ = 101.
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quantities on the interior of the rhodonea, the inclusion region, with a minus,

such as β−. Similarly for the exterior, using β+.

This example is a good test of the EB methodology due to the high

curvature near the inner radius. For the purpose of comparison, we use

reproduce Example 2 of [11]. Here, as there, a range of coefficient ratios,

β−/β+ = 10−3, 10−1, and 103 was run. The exact solution is given by

ϕex,+ =
r4 + c0 log(2r)

β+
(24)

ϕex,− =
r2

β−
, (25)

from which we calculate the solution error ei = κi (ϕi − ϕex
i

). Plots of the

norm of the solution error and the error in the magnitude of the gradient of

the solution (again weighted by volume fraction) are shown in Figure 4. Both

are second order accurate in 1-, 2-, and max-norm. Especially noteworthy is

the second order convergence of the gradient error, which compares favorably

with [11].

The second test uses the same rhodonea geometry, and targets the adap-

tive mesh refinement (AMR) capabilities of Chombo in the multi-material

context. It involves a quadratic source in the center of the rhodonea

ρ = βp
(

a − a2
)4

(26)

ϕex =































r2
0 [a6 (c4a

4 + c3a
3 + c2a

2 + c1a + c0)

− (c4 + c3 + c2 + c1 + c0)

+c log(r0)] if a < 1

r2
0 (c log(r)) otherwise

, (27)

a problem adapted from [14]. Here a = r/r0 and we use a value of r0 = 0.2.

The constants are c = 1
10

− 4
9

+ 6
8
− 4

7
+ 1

6
, c0 = 1

36
, c1 = − 4

49
, c2 = 6

64
,
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Figure 4: Solution error convergence for the rhodonea example, following Oevermann et al.

Top: L∞ norm of the error in the solution. Note that L1 and L2 norms also converge

at second order. Bottom: L∞ norm of the error in the magnitude of the gradient of the

solution. Here again, the L1 and L2 norms also converges at second order.
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c3 = − 4
81

, and c4 = 1
100

. We use a modest ratio of β−/β+ = 1/10. The

matching conditions at the boundary are homogeneous.

Our strategy is to use a single level run to verify the results from an

AMR run, in this case with two levels of refinement. With effective gridding,

normed errors in the AMR case should be very similar to those of the single

grid case with equivalent resolution. We found it simplest to cover the inner

(r < r0) region of the rhodonea entirely with the level two and three grids

in order to ensure that the region with the largest solution gradient is at the

highest resolution. Level two and level three grids also cover the boundary,

which is the other large error region. (An alternate strategy for control-

ling grid placement, Richardson error extrapolation, is more algorithmically

complex, and is left for future work.)

Successive AMR runs increase the base level resolution while keeping the

number of levels fixed. By comparing the error from these runs with that

of single grid runs with equivalent effective resolution, we are able to verify

that AMR is not introducing spurious errors. A plot of the error for a R128

base grid (effective resolution R512) is shown in Figure 5, top. As shown in

the bottom plot, the AMR results are second order. Just as importantly, the

magnitude of the normed errors are only marginally higher than those of the

single grid calculations.

5.2. 2-D and 3-D tests of multigrid solver efficiency

Here we test the performance of the multigrid solver for a range of grid

sizes and beta ratios. In this case an ellipsoid geometry that is easily gener-

alized to three dimensions, as opposed to a 2-D rhodonea geometry, is used.

There is no refinement of the domain using AMR. We measure the number
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Figure 5: Top: Plot of the log of the magnitude of the error for the AMR test with

rhodonea geometry. The rectangle with a thin bounding line shows the extent of the

single level two grid. The rectangles with thick bounding lines show the extent of the level

three grids. Bottom: L∞ norm of the error for three level AMR (pluses), and single level

(open circles) calculations versus base grid size. The line is a reference showing second

order convergence.
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geometry. Beta ratios in the range 10−3 to 103 are plotted. Top is the 2-D result, and the

bottom 3-D. In general, efficiency shows a weak dependence on grid size. At higher beta
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Figure 7: Number of iterations required for convergence versus beta ratio for an ellipsoid

geometry. A higher ratio corresponds to a more nearly homogeneous Neumann boundary

condition on the interior of the interface. Top is the 2-D result, using a grid size of 128;

Bottom is the 3-D results, with a grid size of 64. While convergence initially slows as the

beta ratio increases above unity, the effect reverses at ratios above 102.
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of multigrid iterations required to reduce the L2 norm of the error by ten or-

ders of magnitude. Optimally, the iteration count is independent of the grid

size. In Figure 6 we plot the iteration count versus grid size for resolutions

in the range R32 to R1024 in the 2-D case, and R16 to R256 in the 3-D case.

The figure shows results for beta ratios from β−/β+ = 10−3 to 103. Though

the iteration count increases somewhat with increasing grid size, there is a

stronger dependence on beta ratio, particularly when the latter is greater

than one. The difficulty of solving problems with large beta inclusions is

well documented in the literature; see [11, 7]. We have explored this issue

further by running over a larger range in beta ratios for a single resolution

– R128 in 2-D and R64 in 3-D. As we show in Figure 7, the iteration count

reaches a maximum at a ratio around 102, and decreases thereafter. The

multigrid solver performs better than might naively be expected as the beta

ratio increases, being well suited for problems with high beta inclusions of

106, and likely even higher.

5.3. 3-D test of solution error for Poisson’s equation

Our test of solution error convergence in three dimensions uses a sphere

of radius R = 0.392, and a source and exact solution proportional to an

eigenfunction of the Laplacian in spherical coordinates:

ρ (r) = −k2 sin (kr)

r
(28)

ϕex,p (r) =
1

βp

sin (kr)

r
+ cp (29)

The constant cp is chosen such that [ϕex] = 0, giving homogeneous matching

conditions at the material boundary. Results for solution error are shown
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in Figure 8 and Figure 9. Convergence is second order, independent of the

norm and beta ratio chosen.

5.4. 3-D tests of solution error for the heat equation

In order to test the accuracy of our multi-material method for the heat

equation, we once again use the method of manufactured solutions. For the

desired exact solution ϕex of Equation (2) in material p we again choose

for the spatial component the trigonometric eigenfunction of the spherical

Laplacian from Section 5.3. Time dependence is added via an exponential

decay term. The source term f p is chosen such the heat equation is satisfied.

The exact solution and source are of the form

ϕex,p = cp
0

sin (kr)

r
e−γt + cp

1 (30)

f p = cp
0

(

κpk2 − γ
) sin (kr)

r
e−γt. (31)

In all cases we choose k = 2π. The interface between materials is also a

sphere of radius R = 0.392.

Due to the difficulty of choosing solutions such that the matching condi-

tions Equation (10) are simultaneously zero, we test each in turn. In other

words, we perform one test with a homogeneous Dirichlet boundary, where

the solution in each phase is the same while the jump in the flux varies in

both time and space. The other test uses a homogeneous Neumann boundary,

where κ+ϕ+ = κ−ϕ− so that the flux is continuous across the boundary.

For the homogeneous Dirichlet case we use c−0 = c+
0 = 10, c−1 = c+

1 = 100,

and γ = max(κ+, κ−). All simulations were run for the same number of

timesteps, to a final time such that γtfinal = 0.2. For the homogeneous

Neumann case we use c±0 = 10/κ±, with all other parameters the same as in
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Figure 8: Convergence of the solution error for the Poisson equation in three dimensions

with a spherical boundary between materials. The coefficient in the inclusion is β− = 1,

and on the exterior it is β+ = 10. The source and domain boundary conditions are chosen

such that the jump conditions are homogeneous. Norms of the solution error are plotted,

with triangles denoting the L∞ norm, stars L1, and circles L2 norm. The top line is

a reference showing first-order convergence, and the bottom line showing second-order

convergence.
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the homogeneous Dirichlet case. Results for solution error convergence are

shown in Figure 10, and confirm second order accuracy for both cases.

5.5. Conjugate heat transfer in a nuclear reactor fuel bundle

Finally, we test the multi-material method on a more realistic example,

inspired by nuclear reactor core simulation. The geometry consists of a set

of nineteen coaxial reactor fuel pins. Each pin is wrapped in a helical wire.

Outside of the fuel pin is a moderator, in this case a stationary material with

thermal properties equivalent to liquid sodium. The geometric parameters

used closely follow [20], and are listed in Table 1.1 All parameters are in

CGS units. The source was a Gaussian that falls off with distance from the

pin axis,

f̃ =
f

ρcP

= F̃ exp
(

−r2
pin/s

2
)

. (32)

The source strength F̃ = 2.5 × 103, and the width parameter s = 1/4. This

choice provides a steady-state power density of approximately 102 W/m2.

Initially, the temperature is uniform at 600 K. The top and bottom domain

boundaries were adiabatic (∂T
∂z

= 0), while the others were kept constant at

600 K. The simulation was run using timesteps of dt = 0.1 to a final time

of t = 51.0, at which point the heat flux through the boundary had reached

a steady state. Figure 11 shows the temperature distribution at this final

time.

1The value of the thermal diffusivity in the pins was inferred. Specifically, the sodium

(moderator) thermal conductivity listed in [21] was multiplied by the ratio of pin to mod-

erator conductivities used in [10].
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Figure 10: Convergence of the L∞ norm of the solution error for the heat equation. Top:

homogeneous Dirichlet embedded boundary. Bottom: homogeneous Neumann embedded

boundary. Results span a range in thermal diffusivity ratios. Black pluses denote a ratio

of one. Two cases have larger coefficients outside the sphere, 10−1 (∗) and 10−3 (⊙). Two

cases have larger coefficients inside the sphere, 101 (N) and 103 (×). The line is a reference

indicating second-order convergence.
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Figure 11: Temperature distribution at steady state for a 19-pin fuel bundle. The interfaces

between fuel pin and moderator are represented by semi-transparent surfaces. A slice of

the solution inside the third row of pins is shown. The solution on the exterior is shown

in a slice at the bottom of the domain.
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Name value Source

horizontal domain size 12 None

pin radius 0.800 [20]

wire radius 0.103 [20]

pin-wire separation 0.478 None

pin length 3.000 None

wire separation 20.0 [20]

pin+wire thermal diffusivity 0.9007 [10]

moderator density 0.852 [21]

moderator specific heat 1.2768 × 107 [21]

moderator thermal diffusivity 0.6251 [21]

Table 1: Table of parameters used in fuel bundle test.
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6. Conclusions

We have presented an approach to solving elliptic and parabolic equa-

tions using Cartesian grid embedded boundary methods which is second or-

der accurate and computationally efficient. The former was achieved using

the usual five-point stencil in cells not intersected by the boundary, and a

quadratic approximation to the state at the interface otherwise. In order to

efficiently solve elliptic equations, we use geometric multigrid. This necessi-

tated treatment of a number of special cases that arise when the geometry

is under-resolved.

The method was also shown not to suffer from condition-based solver

convergence issues. It remains stable for ratios up to 106. Moreover, we

find that the rate of convergence improved at high enough material contrast

ratios, a good indicator that it will remain stable and efficient beyond those

tested.

The method was tested on a complex nuclear reactor fuel bundle geometry

that underscored the flexibility of the grid generation approach. This, along

with the parallel computing and AMR capabilities leveraged from Chombo,

are essential to approaching large scale problems. In the future, higher order

extensions of the underlying method will be explored using both the existing

capabilities for high order geometric representations [17] and by extending

the stencil approximations to higher order.
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