skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Krylov Deferred Correction Accelerated Method of Lines Transpose for Parabolic Problems

Journal Article · · Journal of Computational Physics
 [1];  [2]
  1. ORNL
  2. University of North Carolina, Chapel Hill

In this paper, a new class of numerical methods for the accurate and efficient solutions of parabolic partial differential equations is presented. Unlike traditional method of lines (MoL), the new {\bf \it Krylov deferred correction (KDC) accelerated method of lines transpose (MoL^T)} first discretizes the temporal direction using Gaussian type nodes and spectral integration, and symbolically applies low-order time marching schemes to form a preconditioned elliptic system, which is then solved iteratively using Newton-Krylov techniques such as Newton-GMRES or Newton-BiCGStab method. Each function evaluation in the Newton-Krylov method is simply one low-order time-stepping approximation of the error by solving a decoupled system using available fast elliptic equation solvers. Preliminary numerical experiments show that the KDC accelerated MoL^T technique is unconditionally stable, can be spectrally accurate in both temporal and spatial directions, and allows optimal time-step sizes in long-time simulations.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
978778
Journal Information:
Journal of Computational Physics, Vol. 227, Issue 3; ISSN 0021-9991
Country of Publication:
United States
Language:
English