Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Design of the spoke cavity ED&D input coupler.

Conference ·
OSTI ID:974714

The current design of the Accelerator Driven Test Facility (ADTF) accelerator contains multiple {beta}, superconducting, resonant cavities. Spoke-type resonators ({beta} = 0.175 and {beta} = 0.34) are proposed for the low energy linac immediately following the radio frequency quadrupole. A continuous wave power requirement of 8.5 - 211.8 kW, 350 MHz has been established for the input couplers of these spoke cavities. The coupler design approach was to have a single input coupler design for beam currents of 13.3 mA and 100 mA and both cavity {beta}'s. The baseline design consists of a half-height WR2300 waveguide section merged with a shorted coaxial conductor. At the transition is a 4.8-mm thick cylindrical ceramic window creating the air/vacuum barrier. The coax is 103-mm inner diameter, 75 Ohm. The coax extends from the short through the waveguide and terminates with an antenna tip in the sidewall of the cavity. A full diameter pumping port is located in the quarter-wave stub to facilitate good vacuum. The coaxial geometry chosen was based on multipacting and thermal design considerations. The coupling coefficient is adjusted by statically adjusting the outer conductor length. The RF-physics, thermal, vacuum, and structural design considerations will be discussed in this paper, in addition to future room temperature testing plans.

Research Organization:
Los Alamos National Laboratory
Sponsoring Organization:
DOE
OSTI ID:
974714
Report Number(s):
LA-UR-01-4889
Country of Publication:
United States
Language:
English