skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analyzing irradiation -induced creep of silicon carbide

Conference ·
OSTI ID:970869

Irradiation creep, which is among the major lifetime-limiting mechanisms for nuclear structural materials, is stress-driven anisotropic plastic deformation occurring in excess of thermal creep deformation in radiation environments. In this work, experimental irradiation creep data for beta-phase silicon carbide (SiC) irradiated at intermediate temperatures is analyzed using a kinetic model with an assumed linear-coupling of creep strain rate with the rate of self interstitial atom (SIA) absorption at SIA clusters. The model reasonably explains the experimentally observed time-dependent creep rate of ion-irradiated SiC and swelling evolution of ion- and neutron-irradiated SiC. Bend stress relaxation behavior during irradiation was then simulated using the developed model to examine the experimental data obtained by neutron irradiation experiments. Recommended directions of future experiment are provided to further verify and improve the models and assumptions in this work.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
970869
Resource Relation:
Conference: 31st Annual International Conference on Advanced Ceramics & Composites, Daytona Beach, FL, USA, 20070121, 20070121
Country of Publication:
United States
Language:
English