skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The genome of Laccaria bicolor provides insights into

Journal Article · · Nature
 [1];  [2];  [3];  [1];  [4];  [1];  [1];  [1];  [2];  [1];  [2];  [2];  [1];  [5];  [1];  [2];  [3];  [1];  [1];  [4] more »;  [1];  [2];  [1];  [6];  [1];  [7];  [1];  [1];  [1];  [8];  [7];  [9];  [8];  [10];  [8];  [1];  [11];  [1];  [1];  [7];  [7];  [1];  [10];  [12];  [13];  [1];  [1];  [14];  [3];  [1];  [1];  [9];  [15];  [15];  [1];  [4];  [8];  [2];  [11];  [10];  [8];  [16];  [2];  [11];  [13];  [17];  [3];  [2] « less
  1. UMR, France
  2. U.S. Department of Energy, Joint Genome Institute
  3. Lund University, Sweden
  4. Architecture et Fonction des Macromolecules Biologiques, UMR 6098 CNRS and Unive
  5. Institut National de la Recherche Agronomique, France
  6. West Virginia University
  7. Universite de Lyon, France
  8. Georg-August Universitat Gottingen Germany
  9. Stanford University
  10. University of Alabama, Huntsville
  11. Ghent University, Belgium
  12. Eberhard-Karls-Universitat, Tubingen, Germany
  13. University of Lausanne, Switzerland
  14. Unite de Recherches en Genomique-Info,Evry Cedex
  15. ORNL
  16. University of North Carolina, Chapel Hill
  17. University of California, Berkeley

Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
965334
Journal Information:
Nature, Vol. 452, Issue 7183
Country of Publication:
United States
Language:
English