Man-made objects cuing in satellite imagery
- Los Alamos National Laboratory
We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka's Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.
- Research Organization:
- Los Alamos National Laboratory (LANL)
- Sponsoring Organization:
- DOE
- DOE Contract Number:
- AC52-06NA25396
- OSTI ID:
- 962319
- Report Number(s):
- LA-UR-09-01410; LA-UR-09-1410
- Country of Publication:
- United States
- Language:
- English
Similar Records
Hierarchical image feature extraction by an irregular pyramid of polygonal partitions
Proximity graphs based multi-scale image segmentation