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ABSTRACT 

We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on 
a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image 
pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively 
reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed 
with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the 
polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka's 
Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their 
pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural 
analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the 
constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area 
monitoring to quickly guide the further analysis to regions of interest. 

Keywords: irregular pyramid, segmentation, minimum spanning tree, Boruvka, Oelaunay triangulation, man-made, 
cuing, level-of-detail 

1. INTRODUCTION 

With very high-resolution satellite and aerial surveillance becoming ubiquitous and data is being generated at an 
enormous rates, automated cuing of analyst attention on most interesting regions of the original image has become a 
subject of intensive research. Object-oriented image segmentation, detection and classification of regions containing 
man-made objects, such as road networks and buildings, have been given a considerable attention (for a comprehensive 
review see Ridd, M., K., et aI. , 2006). However, the complete automation of this process is still an unsolved problem. 
While many algorithms and approaches have been developed, the manual intervention of the analyst in validating 
segmented objects is needed. State of the art on methods of road network extraction and reconstruction is presented in 
(Mena, 2003 ). The surveyed methods are broadly classified according to the preset objective, the applied extraction 
technique, and the type of used sensor. The paper (Mayer, 1999) surveys the state of the art on building extraction from 
aerial imagery. Assessment of different approaches is performed according to complexity of the employed models and 
strategies. The model comprises the function of objects, material properties, 20 and 3D geometry, scales and levels of 
abstraction, structures of parts, and local and global context. The strategy consist of grouping based on geometric and 
topological regularities, focusing on different scales, context driven search and segmentation, generation of evidence 
from structures of parts, and fusion of data and algorithms. The paper (Baltsavias et aI. , 2004) describes approaches to 
extract cartographic objects and to update GIS. The analysis focuses on extraction of buildings and roads, and reviews 
recent knowledge-based image analysis trends, knowledge representation and augmenting. A review of techniques for 
linear feature detection in images is presented in (Quackenbush, 2004). Reviewed techniques include mathematical 
morphology, Hough transform, multi-resolution edge detection, template matching, dynamic programming for edge 
linking, and rule-based classification. Most of these techniques were developed for extracting roads. 

Very high resolution (VHR) satellite imagery, such as QuickBird and WorldView satellite images ofO.6lm and 0.5m 
spatial resolution, respectively, reveals many details previously unobservable in satellite images; however, at the same 
time, this type of data presents a real challenge. Increases in spatial resolution change object appearance and extend 
variation of objects' spectral, structural and textural characteristics. Existing techniques used to process lower resolution 
satellite images do not generalize well to higher resolutions, due to the changed appearance of features of interest 



*alexei@lanl.gov; phone I 505667-5067; fax I 505664-0362 

(Baltsavias, 2004; Schiewe, et aI., 2001 ). The challenge is due to the fact that the elements of interest are not individual 
pixels, but pixel patches (a.k.a. superpixels, polygons). For instance, roads become less line-like and more polygon-like, 
while differentiation of roads and rooftops based on spectral features is problematic, due to the fact that they can be 
made of similar materials (asphalt) and thus have similar spectral and textural properties (Herold et a!., 2003a, 2004). 
Therefore, the use of structural features, such as shape, becomes very important for differentiation of spectrally similar 
objects. Objects in satellite imagery are often networks of spatially distributed entities of varying sizes (e.g. an industrial 
site) and can be represented in more than one way, and using more than one level of details (LODs). Thus, hierarchic 
object-oriented segmentation (Blaschke, et a!., 2006; Hoffmann, et a!., 2001; Liu et a!., 2008; Walter, 2004; Zhan, et a!., 
2002) and spatial analysis (Bamsley, et a!., 2000; Blaschke, et aI., 2000, 2004; Bock, et a!., 2000; Fuller, et a!., 2004; 
Strat, et a!., 1991; Lowell et a!. 1992; Mustiere et a!., 2002; Herold et.al, 2003a) are indispensable for a robust satellite 
image interpretation, map updating, cartographic generalization, and change analysis. 

This paper presents a framework for man-made object cuing based on hierarchical image segmentation and feature 
extraction. The framework constructs an irregular pyramid that contains a stack of polygonized images of successively 
reduced LODs. The polygonized images are represented as sets of polygonized pixel patches (polygons) attributed with 
spectral, textural, and structural characteristics. The pyramid is built upon an oversegmented image. Oversegmentation is 
achieved by the use of the constrained Delaunay triangulation of edges detected in the original image, followed by 
filtering of generated triangle edges. This closes gaps between edge fragments and creates closed contours outlining an 
initial set of seed polygons. A polygonized image is then represented as a proximity graph with vertices corresponding to 
the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction using Boruvka's 
MST construction algorithm that merges the patches until dissimilarity criteria are exceeded. Concurrently with the 
construction of the image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is 
based on the analysis of shape properties of the constructed patches at mUltiple LODs. Once cuing to regions containing 
man-made objects is done, the further more detailed analysis can be quickly guided to such regions of interest. 

In the next section we present related research in the areas of man-made object detection and hierarchical image 
segmentation using proximity graphs. Section 3 explains our framework for image segmentation, and feature extraction. 
In this section we also present experimental results using QuickBird satellite imagery. Finally, conclusions and future 
work are given in section 4. 

2. RELATED WORK 

2.1 Man-made object detection 

Most of the work in VHR imagery centers on the problem of recognizing specific objects, such as roads and buildings, 
using spectral and texture features . Less work has been published about the robust approaches to detect and characterize 
regions containing generic class of man-made objects using structural features . 

A recent work of (Inglada, 2007) describes a supervised leaming method to detect generic classes of man-made objects 
in satellite images with 2.5 m resolution. Detection is defined as fmding a small region containing an object. High 
number of geometric descriptors are extracted to cope with the diversity of possible object appearance. This is followed 
by SVM-based classification that also deals with high dimensionality of the feature vector. To build a system which is 
robust to spectral variation, only geometric features were used. The selected classes of man-made objects are well 
defined by spatial relations of their edges. This makes possible to avoid spectral characteristics. The considered classes 
included isolated buildings, paths and tracks, crossroads, bridges, wide roads, highways, round-abouts, narrow roads, 
railways, and surburbs. The extracted feature vector includes Hu invariants (Hu, 1962), coefficient of the Fourier-Mellin 
transform, and high-level geometry features related to analyzed pixel patch. The high level features comprises the 
entropy of the orientations of the alignments and the histograms of the distances between selected image elements and 
their sizes. Since the sequential scanning of entire image can be time consuming, it is necessary to use a focusing 
strategy cuing an analysis on interesting regions. Further research is also required to extract features more suitable for 
VHR satellite images. 

(Mueller et a!., 2004) presents an object-oriented image segmentation approach with focus on shape analysis. The 
approach is based on the combination of edge- and region-based segmentation techniques. Shape features, such as 

2 

mailto:alexei@lanl.gov


straight edges, are extracted and control region agglomeration process. Initially, edges are extracted at multiple scales 
and, then they are evaluated using a proposed measure of straightness. Edges meeting prespecified criteria on edge 
contrast, straightness, length are kept. Further analysis on the remaining edges preserves edges lying each from other 
within a tolerable proximity; this results in further edge set reduction. The reduced edge set complements region 
agglomeration that is based on the use of mean intensities of growing regions. This is done by introducing two criteria 
that should be satisfied for regions to be merged. The first one is about whether the pixels are on opposite sides of the 
edge, and the second one prevents regions merging through a bottleneck, when regions are connected through a small 
gap between preserved edges. The approach focuses on the extraction of agricultural fields; thus it assumes that the 
objects are large and rather homogeneous areas with respect to gray-scale intensities. The approach is tested on images 
from different satellites with spatial resolutions 1m, 4.5m, and 5.8 m. 

In (Molinier, 2007) a content-based image retrieval system for the analysis of remote sensing imagery is described. 
Detection of regions containing man-made objects is based on a combination of self-organizing maps (Kohonen, 200 I) 
and is validated on multispectral (2.4m resolution) and panchromatic (0.6m resolution) QuickBird imagery. Prior to 
analysis, each satellite image is split into small regions (imagelets), which are attributed with feature vectors. The feature 
vector comprises average red, green, blue, color moments, texture (extracted from panchromatic image), xy-coordinates, 
NDVI histogram, and edges histogram (extracted from panchromatic image). While experimental evaluation of the 
approach showed its efficiency on the used data, further research is necessary to investigate the influence of the image let 
size, sampling of the original image with the imagelets, and spatial relations between neighboring imagelets. 

(Iqbal et ai, 2002) proposes computer vision framework to exploit image structure for retrieval of images containing 
man-made structures from a database. The framework extracts features which are evidence of the presence of man-made 
objects. This is followed by classification of these features to detect images with man-made objects. The used features 
are straight line segments, a set of lines terminating at a common point (co-terminations), "L" and "U" junctions, parallel 
lines, and polygons. Grouping of line segments to extract appropriate features is based on perceptual grouping rules 
known from visual psychology (Wertheimer, 1958). Polygons are reconstructed using search for the fundamental circuits 
of a co-termination graph. Each fundamental circuit represents a polygon, where edges on this circuit correspond to line 
segments. Each polygon is validated against a number of pre-specified criteria. The approach is validated using outdoor 
imagery. 

One of the applications that exploits man made object detection and characterization is nonproliferation verification 
using satellite imagery. Overview of such application of VHR commercial satellite imagery is presented in (Pabian, 
2008). This book chapter describes approaches for the interpretation of commercial satellite imagery, provides a very 
extensive reference list and links to a variety of publicly available resources, and discusses practicalities and limitations 
of such imagery for detecting undeclared nuclear activities . (Jasani et ai, 2002) also examines the role of satellite 
imagery in preventing nuclear proliferation, and discusses the use of satellites by the International Atomic Energy 
Agency (lAEA). The book contains a collection of contribution from a number of world-renowned experts in a variety 
remote sensing fields . A complete object~based image analysis framework that uses man-made object detection for 
treaty verification is proposed and investigated in (Nissbaum et ai, 2008). The framework is based on multi-scale image 
segmentation that produces an image hierarchy of object-oriented pixel patches, which is analyzed by semantic modeling 
to detect and characterize man-made structures. While the presented framework holds a promise for the considered 
application, it's efficiency is severely limited by the quality of image segmentation. The authors write in their 
conclusions the following (on page 144): "Since, however, the starting point for all results produced by object-based 
image analysis is the segmentation, the latter decisively influences the possibilities and limitations. At the moment the 
automated segmentation algorithm used ... limits the general potential of the image analysis since the segmented object 
boundaries do not exactly correspond to the real world objects." 

The above studies corroborate difficulty of achieving good quality object-oriented segmentation, especially when more 
accurate object segmentation is required for semantic image interpretation. This is a well known outstanding problem in 
computer vision. Structural and high-level analysis that foliows segmentation relies on the quality of extracted pixel 
patches due to the use of shape characteristics and spatial relations of pixel patches. Therefore, the quality of segmenting 
(or grouping) of image elements, such as pixels, into larger structures directly affects the performance of object detection 
and characterization. 
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2.2 Proximity graphs based image segmentation 

Delaunay triangulation (DT) and related proximity graphs such as MST, Relative Neighborhood Graph, Gabriel Graph 
(Toussaint, 1980; Jaromczyk, et aI, 1992) have been widely used in spatial analysis and spatial modeling. Much of the 
work has been devoted to the discovery of building structures and road patterns in urban settlements. (Anders, 2003) 
uses graph-based approach to detect "natural" groups of buildings by analyzing and removing graph edges linking 
individual objects. (Regnauld, 2001 ) applies a proximity graph based approach to recognize building groups. The 
proximity graph is segmented using criteria inspired by the Gestalt psychology (Wertheimer, 1958). These criteria (e.g. 
proximity, similarity, good continuation) specify the formation of perceptually significant and visually attractive 
patterns. The challenge with using these criteria is that by themselves they provide no general-purpose scheme to resolve 
potentially conflicting outcomes of their application into an overall satisfactory result. Different inter-element relational 
attributes reflecting these criteria are usually condensed into composite weights, "generalized costs", to make a problem 
of groping elements into objects computationally tractable. Further example of spatial analysis includes land use 
classification in (Zhan et aI, 2002) that is based on Delaunay triangulation that derives spatial relations between the 
detected image objects. (Skourikhine, 2006) uses Delaunay triangulation and Euclidian MST to reconstruct road network 
using a set of pixel patches spectrally pre-classified as candidate road fragments . (Sharma et aI, 2008) uses the Delaunay 
and the Voronoi graphs to extract features characterizing road and hydrographic networks. 

While spatial analysis techniques based on proximity graphs are widely used and advanced, they are based on the 
assumption that objects of interest are available, either as a result of supervised spectral and texture-based classification 
of original imagery or unsupervised segmentation. Bottom-up unsupervised image segmentation approach holds a lot of 
promise for image interpretation, at the same time, it is an extremely difficult problem when the environment is 
unconstrained and automated segmentation is required. The principle of this approach is that each initial pixel patch will 
grow until no more similar patches can be added to it. We summarize here few techniques that create an initial image 
representation consisting of pixels patches (superpixels) that can serve as starting data set for the bootm-up 
agglomeration process. (Prasad et aI, 2006a, 2006b) propose a computationally efficient image segmentation framework 
that uses the constrained DT of the image edge set followed by selective filtering of generated triangulation edges. This 
creates an oversegmented image. It contains polygonized pixel patches outlined by closed contours consisting of 
detected edges and preserved triangulation edges (which close gaps between detected edges). A related example of how 
DT can be used to complete piecewise linear contour approximations is given in (Ren at aI, 2005) . It should be noted 
that there are other than triangulation-based approaches for image pre-segmentation and creation of superpixels. They 
can be created using such approaches as watershed based segmentation (Vincent et aI, 1991 ), and Mean Shift that is a 
kernel based density estimation technique (Fukunaga et aI, 1975; Cheng, 1995; Comaniciu et aI, 2002). Examples of the 
approaches of how to build a segmentation from the originally oversegmented image include (Li et aI, 2004; Chefd'hotel 
et aI, 2007; Stawiaski et aI, 2008 ; Hanbury, 2008). 

We emphasize a category of algorithms that seek optimal image hierarchic partitioning through a sequence of local 
computations based on proximity graphs, specifically MST. The MST based image segmentation seeks image 
partitioning by iteratively linking image elements through the lowest cost tree edges, which represent similarity of 
neighboring elements. One of the earliest applications of tree-based data clustering to visual like point data sets analyzed 
histogram of MST edges and investigated tree characteristics such as MST "relative compactness", tree diameter, and 
point densities (Zahn, 1971 ). In (Horovitz, et aI., 1976) the tree-based concept was applied to image segmentation. It was 
suggested to use global homogeneity criterion to control construction of an irregular pyramid starting from a regularly 
sampled pixel grid. (Morris et aI, 1986) proposes hierarchic image segmentation approach based on Kruskal's MST 
construction algorithm (Kruskal, 1956), starting from a regular pixel grid. Hierarchic merging of pixel patches is 
controlled by updated intensity dissimilarities between the agglomerated patches. (Montanvert, et aI., 1991; Jolion, et aI., 
1992) use irregular tessellations to generate an adaptive multi-scale image representation. The approach employs an 
irregular sampling of the pixel grid to build the initial (lower scale) image representations. The irregular sampling 
hierarchy is then recursively built from the lower scales. The result depends on the stochastic nature of the sampling 
procedure. (Xu, et aI., 1997) uses Kruskal's algorithm to construct MST of the image from a regularly sampled pixel 
grid. The tree is then partitioned by an optimization algorithm into subtrees based on the subtrees' spectral similarities. A 
set of produced subtrees represents a sought image partition. Similar to (Xu, et aI., 1997), (Felzenszwalb, et aI., 1998) 
starts from a regular pixel grid and uses Kruskal's algorithm to construct MST of the image. However, MST construction 
is based on thresholding a ratio of the variation between neighboring pixel patches and the variation within the patches. 
To avoid over-fragmentation (generation of too many small regions), the approach adjusts the measure of variation using 
the sizes of patches. The extent of this adjustment controls how easily small patches are merged with the larger 
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Fig. I. Iterations of Boruvka' s MST reconstruction (from left to right). MST edges are shown in solid black lines; numbers 
represent similarities between the nodes, the lower the number, the more similar the nodes are. 

neighbors. While it works in many situations, nontrivial optimization of this size based term is required for satellite 
image segmentation, where image elements of interest (e.g, fences, pipelines) can be of small size (width) and may not 
stand out strongly of the image background. The approach (Haxhimusa et ai, 2004, 2006; Kropatsch et ai, 2007) is 
similar to (Felzenszwalb et ai, 1998) in how it controls the grouping of pixels into patches based on image variation. The 
approach (Haxhimusa, et al., 2004, 2006; Kropatsch et ai, 2007) uses Boruvka's MST construction algorithm (Boruvka, 
1926; Nesetril et ai, 2001 ) instead of Kruskal's algorithm that is used in (Felzenszwalb et ai, 1998). Computational 
complexity of Kruskal's algorithm for computing the MST of a graph is O(ElogE) , and the complexity of Boruvka's 
algorithm is O(ElogN), where E is the number of edges in the graph. In contrast with Kruskal's and Prim's (Prim, 1957) 
MST construction algorithms, that build the MST one edge at a time, Boruvka's algorithm adds several MST edges at 
each stage (Fig. 1). In the context of image segmentation this characteristic of Boruvka's algorithm provides an efficient 
approach for simultaneous agglomeration of image elements into higher level structures. 

Our framework belongs to the image segmentation approaches, producing an irregular image pyramids. However, in 
contrast with the stated approaches that start from regular or irregular pixel grids we build an irregular hierarchy of 
image partitions starting from triangular and polygonal tessellations of the image. The irregular polygon based image 
segmentation hierarchy is iteratively built bottom-up using Boruvka's MST algorithm . LaDs of the constructed pyramid 
contain graphs of the agglomerated objects, and spatial analysis based on the proximity graphs can now be applied to 
extract and exploit contextual relations between the objects across multiple LaDs. The proposed framework, as well as 
the above proximity graph based approaches, can also be generalized to process pixel patches (superpixels) produced by 
alternative non-triangulation based techniques. 

3. OBJECT ORIENTED IMAGE SEGMENTATION AND ANALYSIS 

In a polygon-based image pyramid, each LaD represents a polygonal tessellation of the image. The pyramid is built 
iteratively from bottom-up using only local interactions of the neighboring polygons. On the lowest level (/=0, fme level 
of detail) of the pyramid the polygons are constructed from an irregular triangular tessellation of the image; they are 
unions of triangles. On higher level (1 ) 0, coarser level of detail) of the pyramid the polygons are unions of neighboring 
polygons on a lower finer level (/-1). The polygons on level I of the pyramid are considered as the vertices of an 
undirected graph G,. The edges of the graph describe the adjacency relations between the polygons on level I. Thus G, = ( 
V" E,), where V, is the set of vertices, and E, is the set of edges. The derivation of G'+I from G, is formulated as 
construction of an MST of G,. The built pyramid P is described as a set of graphs G, representing the image in a fine-to­
coarse hierarchy. 

3.1 Construction of seed polygons 

Polygons on the lowest (fine) level of a pyramid are built upon the triangular tessellation of the image. We employ the 
image vectorization approach (Prasad, et al., 2006a, 2006b) to process the generated triangle grid. First, we detect edges 
in the image, e.g. using Carmy edge detector (Carmy, 1986). This is followed by constrained Delaunay triangulation 
(CDT) (Schewchuk, 1996) where the detected edges are used as constraints for the triangulation. Thus, the CDT 
tessellation grid is adapted to the image content, since triangle vertices and edges reflect the structure and spatial 
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Fig. 2. Examples of triangle edge filtering based on proximity (left) and based on closure (right). Deleted triangle edges are 
shown in blue, and the kept triangle edges (closing the gaps between Canny edges) are shown in cyan color. 

adjacency of the detected edges. COT generated triangular mesh is then processed by edge filtering. The filtering keeps 
constraints (the detected edges) and selectively deletes generated triangle edges. Triangle edge filtering uses the 
principles of visual perception, such as proximity and closure. Proximity filters out triangle edges based on their length 
(Fig. 2, left) . As a result, the detected edges that are spatially close to each other are linked by the kept shortest triangle 
edge. The closure rule is responsible for filtering out triangle edges which are bounded by the same detected edge (e.g., 
"U"-shape) or the same pair of detected edges (Fig. 2, right) . This results in a set of closed contours consisting of 
combination of the generated triangle edges and spectrally detected edges. Finally, a graph traversal algorithm groups 
triangles within the constructed closed contours into polygons. These polygons are assigned median color based on a 
sampling of pixels covered by the grouped triangles . Thus the image is segmented in a set of spectrally attributed 
polygons. The drastic reduction in the amount of data, number of pixels to number of generated polygons, by 20-80 
times provides significant gains in computational efficiency for further analysis. 

3.2 Hierarchical image segmentation 

Building larger polygons on top of the produced seed polygons has the following advantage: agglomeration of polygons 
will be implicitly directed in the sense that boundaries of agglomerated polygons will also be authentic to the image 
spectral discontinuities. We extend our previous work (Skurikhin, 2008; Skurikhin et aI, 2008) by taking into account 
variogram-based estimation of spatial variation (Chica-Olmo et aI, 2004). 

Once the polygon-based image representation on the lowest level of a pyramid is produced, we iteratively group 
polygons, sharing their contour fragments, on level 1 into larger polygonal chunks, producing level (1+ /) of the image 
pyramid (Fig. 3). Polygon agglomeration is based on Boruvka's algorithm to construct MST. Boruvka's algorithm 
proceeds in a sequence of stages, and in each stage it identifies a forest F consisting of the minimum-weight edge 
incident to each vertex in the graph G, then forms the graph G 1 = G\F as the input to the next stage. G\F denotes the 
graph derived from G by contracting edges in F. 

The overall quality of segmentation depends on the pairwise polygon adjacency matrix, containing E,. The attributes of 
edges are defined using three features: color similarity, I'l.Cij, variogram difference, I'l.Yij, and strength of the contour 
segment separating polygons, PII" We evaluate the affinity w ij between two neighboring polygons i and): 

!:J.Cij . k .exp( Pi), if nmLODs ::; No 
(I) 

W i; ={ (!:J.Cij + !:J.Yij ). k . exp( Pi),ofherwise 

N S 
Pw=I_k ·mk (2) 

k=l S 

where No is the number of LODs that should be constructed before variogram term is taken into account, contour 
segment shared by two neighboring polygons consists of N edge fragments (Fig. 4), S is the length of the shared contour 
segment, Sk is the length of the shared edge fragment belonging to a given contour fragment, k and 0" control the scale of 
polygons similarity, and m k is the magnitude of the shared edge segment. m k is 0 for triangle edge and non-zero for 
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Fig. 3. Hierarchical image segmentation the produces an irregular pyramid of fine-to-coarse LODs. An example of 
segmentation is shown on the right. Contours of the constructed patches are shown in red. 

52 

Polygon B 

Fig. 4. An example of the contour fragment shared by two neighboring polygons A and B. The shared contour fragment 
consists of five edge fragments of corresponding lengths SI through S5. 

spectrally detected edge. Thus the cost of merging two polygons separated only by triangle edges is less than the cost of 
merging polygons separated by spectrally detected edges. 

The algorithm constructs level (/+ 1) of a pyramid containing coarser image partitioning by running one Boruvka's 
iteration on level/using the evaluated color, variogram, and contour relations between the polygons. Once a coarser 
level is constructed, the color characterization of agglomerated polygons on level (/+ 1) is evaluated: 

M A'
C'+l ="_k_ .C' (3) 

I ~A'+l k 
k=l i 

where M is the number of polygons merged into polygon i on level (/+ 1), C: is the color of a polygon i on level /, A: 
is the area of a polygon i on level /. 

The spatial layout of the polygons changes after each agglomeration iteration. As a result, the adjacency matrix 
corresponding to level (/+1) is re-evaluated. This generation of coarser level based on finer level of a pyramid iteratively 
goes until pre-specified dissimilarity threshold is exceeded. 
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3.3 	 Man-made objects cuing 

Once the polygons constructed, structural feature extraction is performed across predefined number of LODs. The list of 
the investigated features is shown in table I. The same features can be used to bias the agglomeration process of MST 
reconstruction by making grouping of two neighboring polygons having similar structural features (e.g. convexity close 
to I.) easier contrary to the neighboring polygons having only spectral similarity. Table I shows shape descriptors , 
which combination is used to detect man-made objects. 

Table I. Shape descriptors. A: area of the polygon; P: perimeter of the polygon; Pconvex: perimeter of the convex hull; 
Aconvex: area of the convex hull; Aholes: area occupied by holes inside the polygon; Alolal: total area of the polygon 

including A holes and A; [skeleton : total length of the polygon evaluated based on the skeleton; Wskeleton :average width 

of the polygon evaluated based on the skeleton. 

Parameter Name Formula Parameter Name Formula 

Form/actor 4· ". AI p 2 Convexity ~onvex/p 

Elongation 
[skeleton / Wskeleton 

Solidity AIAeonvex 

Hole Fraction 

~-- - ­ ~-

A holes / Atotal 

- ~ -

Rectilinearity 

- ­ - ­

The presence of directional 
structures (e.g. contour fragments) 
approximately 90° apart 
- ­ -- ­

- -- ~ ~. 

.I ~ j'_"'~.".~ 
, 
~ 

. . '. ".­
. .' 

r· 

Fig. 	 5. An example of hierarchic image segmentation. Left: a satellite image of the Yongbyon nuclear reactor in North 
Korea, 806 x762 pixels (credit: © DigitaIGlobe). Center: segmented image on LOD=6, 191 polygons (outlined with red 
contours). Right : segmented image on LOD=8, 161 polygons. Initial fine LOD= I (not shown) contains 30,002 
polygons. 

3.4 	Experimental results 

The presented framework was preliminary evaluated using the Berkeley Segmentation dataset' and Digital Globe 
satellite imagery. Figures 5 through 7 show some results of satellite image segmentation and man-made object cuing 
using our framework. The results of man-made object cuing are shown using prespecified LODs. The challenge in 
application of the structural analysis to the polygons lies in automated choice of LODs, on which the analysis has to be 
applied to. Fine level of detail of a pyramid is constructed using Canny ed~e detector with the (JCanny = I., hysteresis low 
threshold = 0. , and hysteresis high threshold = 5. We use the Triangle code ' to generate triangular tessellation over the 

• http://www.eecs. berke ley. ed ulResearch/Pro j ects/CS/vis ionl grouping! segbenchl 
•• http://www.cs.cmu.edu/-quake/triangle.html 
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Fig. 6. An example of man-made object detection. 

Top row. Left: a satellite image of the Yongbyon nuclear reactor in North Korea, 806x762 pixels (credit: DigitalGlobe). 
Center: segmented image on LOD=8, 161 polygons (outlined with red contours). Right: result of man-made object 
detection on LOD=8, detected man-made objects are shown in white color. 

Bottom row. Left: a satellite image of Arak nuclear site in Iran, 1528x 1487 pixels (credit: DigitalGlobe). Center: segmented 
image on LOD= IO, 1374 polygons (outlined with red contours). Right: result of man-made object detection on 
LOD= IO, detected man-made objects are shown in red color. 

detected edge map. Color images were processed using either one of CIELab, CIELuv, or HSV spaces. No is set to 2 to 
create two coarser LODs on top of the fine LOD before variogram is taken into account. The results are shown for 
CIELab space. Global threshold was set to 20 because the perceptually significant difference in color space is estimated 
in the range [15, 30]. Scale parameters k and (J' for adjacency relations were both set to \. On average the produced 
hierarchies contained 6-10 LODs. 

Total complexity is O(NlogN + VlogE) (where N is number of used edge points, V is number of initial polygons, E is 
number of relations between the polygons), time consumed depends on how textured the image is; the more texture in 
the mage, the more edges will be detected, the more time will be consumed. 

4. CONCLUSIONS 

We have developed and presented a segmentation framework to construct a fme-to-coarse hierarchy of irregular image 
partitions that are utilized by structural analysis to detect man-made structures. Experimental results support the validity 
of the proposed approach. It uses spectral, textural, and contour relations between polygons as criteria of their 
agglomeration. Computational complexity of the algorithm makes it possible to use it for processing large images. The 
outstanding problems are development of better texture characterization that is attributed to polygonal pixel patches, 
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automated choice of LODs to perform structural analysis, and adaptive thresholding of the agglomeration process by 
taking into account both local and global image statistics. 
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