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Man-made objects cuing in satellite imagery

Alexei N. Skurikhin*
MS D436, Space and Remote Sensing Group, Los Alamos National Laboratory, Los Alamos, NM,
USA 87545

ABSTRACT

We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on
a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image
pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively
reduced levels of detail (LODs). We are jumping off from the over-segmented image represented by polygons attributed
with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the
polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka's
Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their
pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural
analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the
constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area
monitoring to quickly guide the further analysis to regions of interest.

Keywords: irregular pyramid, segmentation, minimum spanning tree, Boruvka, Delaunay triangulation, man-made,
cuing, level-of-detail

1. INTRODUCTION

With very high-resolution satellite and aerial surveillance becoming ubiquitous and data is being generated at an
enormous rates, automated cuing of analyst attention on most interesting regions of the original image has become a
subject of intensive research. Object-oriented image segmentation, detection and classification of regions containing
man-made objects, such as road networks and buildings, have been given a considerable attention (for a comprehensive
review see Ridd, M., K., et al., 2006). However, the complete automation of this process is still an unsolved problem.
While many algorithms and approaches have been developed, the manual intervention of the analyst in validating
segmented objects is needed. State of the art on methods of road network extraction and reconstruction is presented in
(Mena, 2003). The surveyed methods are broadly classified according to the preset objective, the applied extraction
technique, and the type of used sensor. The paper (Mayer, 1999) surveys the state of the art on building extraction from
aerial imagery. Assessment of different approaches is performed according to complexity of the employed models and
strategies. The model comprises the function of objects, material properties, 2D and 3D geometry, scales and levels of
abstraction, structures of parts, and local and global context. The strategy consist of grouping based on geometric and
topological regularities, focusing on different scales, context driven search and segmentation, generation of evidence
from structures of parts, and fusion of data and algorithms. The paper (Baltsavias et al., 2004) describes approaches to
extract cartographic objects and to update GIS. The analysis focuses on extraction of buildings and roads, and reviews
recent knowledge-based image analysis trends, knowledge representation and augmenting. A review of techniques for
linear feature detection in images is presented in (Quackenbush, 2004). Reviewed techniques include mathematical
morphology, Hough transform, multi-resolution edge detection, template matching, dynamic programming for edge
linking, and rule-based classification. Most of these techniques were developed for extracting roads.

Very high resolution (VHR) satellite imagery, such as QuickBird and WorldView satellite images of 0.61m and 0.5m
spatial resolution, respectively, reveals many details previously unobservable in satellite images; however, at the same
time, this type of data presents a real challenge. Increases in spatial resolution change object appearance and extend
variation of objects' spectral, structural and textural characteristics. Existing techniques used to process lower resolution
satellite images do not generalize well to higher resolutions, due to the changed appearance of features of interest
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(Baltsavias, 2004; Schiewe, et al., 2001). The challenge is due to the fact that the elements of interest are not individual
pixels, but pixel patches (a.k.a. superpixels, polygons). For instance, roads become less line-like and more polygon-like,
while differentiation of roads and rooftops based on spectral features is problematic, due to the fact that they can be
made of similar materials (asphalt) and thus have similar spectral and textural properties (Herold et al., 2003a, 2004).
Therefore, the use of structural features, such as shape, becomes very important for differentiation of spectrally similar
objects. Objects in satellite imagery are often networks of spatially distributed entities of varying sizes (e.g. an industrial
site) and can be represented in more than one way, and using more than one level of details (LODs). Thus, hierarchic
object-oriented segmentation (Blaschke, et al., 2006; Hoffmann, et al., 2001; Liu et al., 2008; Walter, 2004; Zhan, et al.,
2002) and spatial analysis (Barnsley, et al., 2000; Blaschke, et al., 2000, 2004; Bock, et al., 2000; Fuller, et al., 2004;
Strat, et al., 1991; Lowell et al. 1992; Mustiére et al., 2002; Herold et.al, 2003a) are indispensable for a robust satellite
image interpretation, map updating, cartographic generalization, and change analysis.

This paper presents a framework for man-made object cuing based on hierarchical image segmentation and feature
extraction. The framework constructs an irregular pyramid that contains a stack of polygonized images of successively
reduced LODs. The polygonized images are represented as sets of polygonized pixel patches (polygons) attributed with
spectral, textural, and structural characteristics. The pyramid is built upon an oversegmented image. Oversegmentation is
achieved by the use of the constrained Delaunay triangulation of edges detected in the original image, followed by
filtering of generated triangle edges. This closes gaps between edge fragments and creates closed contours outlining an
initial set of seed polygons. A polygonized image is then represented as a proximity graph with vertices corresponding to
the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction using Boruvka's
MST construction algorithm that merges the patches until dissimilarity criteria are exceeded. Concurrently with the
construction of the image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is
based on the analysis of shape properties of the constructed patches at multiple LODs. Once cuing to regions containing
man-made objects is done, the further more detailed analysis can be quickly guided to such regions of interest.

In the next section we present related research in the areas of man-made object detection and hierarchical image
segmentation using proximity graphs. Section 3 explains our framework for image segmentation, and feature extraction.
In this section we also present experimental results using QuickBird satellite imagery. Finally, conclusions and future
work are given in section 4.

2. RELATED WORK

2.1 Man-made object detection

Most of the work in VHR imagery centers on the problem of recognizing specific objects, such as roads and buildings,
using spectral and texture features. Less work has been published about the robust approaches to detect and characterize
regions containing generic class of man-made objects using structural features.

A recent work of (Inglada, 2007) describes a supervised learning method to detect generic classes of man-made objects
in satellite images with 2.5 m resolution. Detection is defined as finding a small region containing an object. High
number of geometric descriptors are extracted to cope with the diversity of possible object appearance. This is followed
by SVM-based classification that also deals with high dimensionality of the feature vector. To build a system which is
robust to spectral variation, only geometric features were used. The selected classes of man-made objects are well
defined by spatial relations of their edges. This makes possible to avoid spectral characteristics. The considered classes
included isolated buildings, paths and tracks, crossroads, bridges, wide roads, highways, round-abouts, narrow roads,
railways, and surburbs. The extracted feature vector includes Hu invariants (Hu, 1962), coefficient of the Fourier-Mellin
transform, and high-level geometry features related to analyzed pixel patch. The high level features comprises the
entropy of the orientations of the alignments and the histograms of the distances between selected image elements and
their sizes. Since the sequential scanning of entire image can be time consuming, it is necessary to use a focusing
strategy cuing an analysis on interesting regions. Further research is also required to extract features more suitable for
VHR satellite images.

(Mueller et al., 2004) presents an object-oriented image segmentation approach with focus on shape analysis. The
approach is based on the combination of edge- and region-based segmentation techniques. Shape features, such as
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straight edges, are extracted and control region agglomeration process. Initially, edges are extracted at multiple scales
and, then they are evaluated using a proposed measure of straightness. Edges meeting prespecified criteria on edge
contrast, straightness, length are kept. Further analysis on the remaining edges preserves edges lying each from other
within a tolerable proximity; this results in further edge set reduction. The reduced edge set complements region
agglomeration that is based on the use of mean intensities of growing regions. This is done by introducing two criteria
that should be satisfied for regions to be merged. The first one is about whether the pixels are on opposite sides of the
edge, and the second one prevents regions merging through a bottleneck, when regions are connected through a small
gap between preserved edges. The approach focuses on the extraction of agricultural fields; thus it assumes that the
objects are large and rather homogeneous areas with respect to gray-scale intensities. The approach is tested on images
from different satellites with spatial resolutions 1m, 4.5m, and 5.8 m.

In (Molinier, 2007) a content-based image retrieval system for the analysis of remote sensing imagery is described.
Detection of regions containing man-made objects is based on a combination of self-organizing maps (Kohonen, 2001)
and is validated on multispectral (2.4m resolution) and panchromatic (0.6m resolution) QuickBird imagery. Prior to
analysis, each satellite image is split into small regions (imagelets), which are attributed with feature vectors. The feature
vector comprises average red, green, blue, color moments, texture (extracted from panchromatic image), xy-coordinates,
NDVI histogram, and edges histogram (extracted from panchromatic image). While experimental evaluation of the
approach showed its efficiency on the used data, further research is necessary to investigate the influence of the imagelet
size, sampling of the original image with the imagelets, and spatial relations between neighboring imagelets.

(Igbal et al, 2002) proposes computer vision framework to exploit image structure for retrieval of images containing
man-made structures from a database. The framework extracts features which are evidence of the presence of man-made
objects. This is followed by classification of these features to detect images with man-made objects. The used features
are straight line segments, a set of lines terminating at a common point (co-terminations), "L" and "U" junctions, parallel
lines, and polygons. Grouping of line segments to extract appropriate features is based on perceptual grouping rules
known from visual psychology (Wertheimer, 1958). Polygons are reconstructed using search for the fundamental circuits
of a co-termination graph. Each fundamental circuit represents a polygon, where edges on this circuit correspond to line
segments. Each polygon is validated against a number of pre-specified criteria. The approach is validated using outdoor
imagery.

One of the applications that exploits man made object detection and characterization is nonproliferation verification
using satellite imagery. Overview of such application of VHR commercial satellite imagery is presented in (Pabian,
2008). This book chapter describes approaches for the interpretation of commercial satellite imagery, provides a very
extensive reference list and links to a variety of publicly available resources, and discusses practicalities and limitations
of such imagery for detecting undeclared nuclear activities. (Jasani et al, 2002) also examines the role of satellite
imagery in preventing nuclear proliferation, and discusses the use of satellites by the International Atomic Energy
Agency (IAEA). The book contains a collection of contribution from a number of world-renowned experts in a variety
remote sensing fields. A complete object-based image analysis framework that uses man-made object detection for
treaty verification is proposed and investigated in (Nissbaum et al, 2008). The framework is based on multi-scale image
segmentation that produces an image hierarchy of object-oriented pixel patches, which is analyzed by semantic modeling
to detect and characterize man-made structures. While the presented framework holds a promise for the considered
application, it's efficiency is severely limited by the quality of image segmentation. The authors write in their
conclusions the following (on page 144): "Since, however, the starting point for all results produced by object-based
image analysis is the segmentation, the latter decisively influences the possibilities and limitations. At the moment the
automated segmentation algorithm used ... limits the general potential of the image analysis since the segmented object
boundaries do not exactly correspond to the real world objects."

The above studies corroborate difficulty of achieving good quality object-oriented segmentation, especially when more
accurate object segmentation is required for semantic image interpretation. This is a well known outstanding problem in
computer vision. Structural and high-level analysis that follows segmentation relies on the quality of extracted pixel
patches due to the use of shape characteristics and spatial relations of pixel patches. Therefore, the quality of segmenting
(or grouping) of image elements, such as pixels, into larger structures directly affects the performance of object detection
and characterization.



2.2 Proximity graphs based image segmentation

Delaunay triangulation (DT) and related proximity graphs such as MST, Relative Neighborhood Graph, Gabriel Graph
(Toussaint, 1980; Jaromczyk, et al, 1992) have been widely used in spatial analysis and spatial modeling. Much of the
work has been devoted to the discovery of building structures and road patterns in urban settlements. (Anders, 2003)
uses graph-based approach to detect "natural" groups of buildings by analyzing and removing graph edges linking
individual objects. (Regnauld, 2001) applies a proximity graph based approach to recognize building groups. The
proximity graph is segmented using criteria inspired by the Gestalt psychology (Wertheimer, 1958). These criteria (e.g.
proximity, similarity, good continuation) specify the formation of perceptually significant and visually attractive
patterns. The challenge with using these criteria is that by themselves they provide no general-purpose scheme to resolve
potentially conflicting outcomes of their application into an overall satisfactory result. Different inter-element relational
attributes reflecting these criteria are usually condensed into composite weights, “generalized costs”, to make a problem
of groping elements into objects computationally tractable. Further example of spatial analysis includes land use
classification in (Zhan et al, 2002) that is based on Delaunay triangulation that derives spatial relations between the
detected image objects. (Skourikhine, 2006) uses Delaunay triangulation and Euclidian MST to reconstruct road network
using a set of pixel patches spectrally pre-classified as candidate road fragments. (Sharma et al, 2008) uses the Delaunay
and the Voronoi graphs to extract features characterizing road and hydrographic networks.

While spatial analysis techniques based on proximity graphs are widely used and advanced, they are based on the
assumption that objects of interest are available, either as a result of supervised spectral and texture-based classification
of original imagery or unsupervised segmentation. Bottom-up unsupervised image segmentation approach holds a lot of
promise for image interpretation, at the same time, it is an extremely difficult problem when the environment is
unconstrained and automated segmentation is required. The principle of this approach is that each initial pixel patch will
grow until no more similar patches can be added to it. We summarize here few techniques that create an initial image
representation consisting of pixels patches (superpixels) that can serve as starting data set for the bootm-up
agglomeration process. (Prasad et al, 2006a, 2006b) propose a computationally efficient image segmentation framework
that uses the constrained DT of the image edge set followed by selective filtering of generated triangulation edges. This
creates an oversegmented image. It contains polygonized pixel patches outlined by closed contours consisting of
detected edges and preserved triangulation edges (which close gaps between detected edges). A related example of how
DT can be used to complete piecewise linear contour approximations is given in (Ren at al, 2005) . It should be noted
that there are other than triangulation-based approaches for image pre-segmentation and creation of superpixels. They
can be created using such approaches as watershed based segmentation (Vincent et al, 1991), and Mean Shift that is a
kernel based density estimation technique (Fukunaga et al, 1975; Cheng, 1995; Comaniciu et al, 2002). Examples of the
approaches of how to build a segmentation from the originally oversegmented image include (Li et al, 2004; Chefd'hotel
et al, 2007; Stawiaski et al, 2008; Hanbury, 2008).

We emphasize a category of algorithms that seek optimal image hierarchic partitioning through a sequence of local
computations based on proximity graphs, specifically MST. The MST based image segmentation seeks image
partitioning by iteratively linking image elements through the lowest cost tree edges, which represent similarity of
neighboring elements. One of the earliest applications of tree-based data clustering to visual like point data sets analyzed
histogram of MST edges and investigated tree characteristics such as MST "relative compactness", tree diameter, and
point densities (Zahn, 1971). In (Horovitz, et al., 1976) the tree-based concept was applied to image segmentation. It was
suggested to use global homogeneity criterion to control construction of an irregular pyramid starting from a regularly
sampled pixel grid. (Morris et al, 1986) proposes hierarchic image segmentation approach based on Kruskal's MST
construction algorithm (Kruskal, 1956), starting from a regular pixel grid. Hierarchic merging of pixel patches is
controlled by updated intensity dissimilarities between the agglomerated patches. (Montanvert, et al., 1991; Jolion, et al.,
1992) use irregular tessellations to generate an adaptive multi-scale image representation. The approach employs an
irregular sampling of the pixel grid to build the initial (lower scale) image representations. The irregular sampling
hierarchy is then recursively built from the lower scales. The result depends on the stochastic nature of the sampling
procedure. (Xu, et al., 1997) uses Kruskal's algorithm to construct MST of the image from a regularly sampled pixel
grid. The tree is then partitioned by an optimization algorithm into subtrees based on the subtrees' spectral similarities. A
set of produced subtrees represents a sought image partition. Similar to (Xu, et al., 1997), (Felzenszwalb, et al., 1998)
starts from a regular pixel grid and uses Kruskal's algorithm to construct MST of the image. However, MST construction
is based on thresholding a ratio of the variation between neighboring pixel patches and the variation within the patches.
To avoid over-fragmentation (generation of too many small regions), the approach adjusts the measure of variation using
the sizes of patches. The extent of this adjustment controls how easily small patches are merged with the larger



Fig. 1. Iterations of Boruvka’s MST reconstruction (from left to right). MST edges are shown in solid black lines; numbers
represent similarities between the nodes, the lower the number, the more similar the nodes are.

neighbors. While it works in many situations, nontrivial optimization of this size based term is required for satellite
image segmentation, where image elements of interest (e.g, fences, pipelines) can be of small size (width) and may not
stand out strongly of the image background. The approach (Haxhimusa et al, 2004, 2006; Kropatsch et al, 2007) is
similar to (Felzenszwalb et al, 1998) in how it controls the grouping of pixels into patches based on image variation. The
approach (Haxhimusa, et al., 2004, 2006; Kropatsch et al, 2007) uses Boruvka's MST construction algorithm (Bortivka,
1926; Nesettil et al, 2001) instead of Kruskal's algorithm that is used in (Felzenszwalb et al, 1998). Computational
complexity of Kruskal’s algorithm for computing the MST of a graph is O(ElogE), and the complexity of Boruvka’s
algorithm is O(ElogN), where E is the number of edges in the graph. In contrast with Kruskal’s and Prim’s (Prim, 1957)
MST construction algorithms, that build the MST one edge at a time, Boruvka’s algorithm adds several MST edges at
each stage (Fig. 1). In the context of image segmentation this characteristic of Boruvka’s algorithm provides an efficient
approach for simultaneous agglomeration of image elements into higher level structures.

Our framework belongs to the image segmentation approaches, producing an irregular image pyramids. However, in
contrast with the stated approaches that start from regular or irregular pixel grids we build an irregular hierarchy of
image partitions starting from triangular and polygonal tessellations of the image. The irregular polygon based image
segmentation hierarchy is iteratively built bottom-up using Boruvka’s MST algorithm. LODs of the constructed pyramid
contain graphs of the agglomerated objects, and spatial analysis based on the proximity graphs can now be applied to
extract and exploit contextual relations between the objects across multiple LODs. The proposed framework, as well as
the above proximity graph based approaches, can also be generalized to process pixel patches (superpixels) produced by
alternative non-triangulation based techniques.

3. OBJECT ORIENTED IMAGE SEGMENTATION AND ANALYSIS

In a polygon-based image pyramid, each LOD represents a polygonal tessellation of the image. The pyramid is built
iteratively from bottom-up using only local interactions of the neighboring polygons. On the lowest level (/=0, fine level
of detail) of the pyramid the polygons are constructed from an irregular triangular tessellation of the image; they are
unions of triangles. On higher level (/>0, coarser level of detail) of the pyramid the polygons are unions of neighboring
polygons on a lower finer level (/-7). The polygons on level / of the pyramid are considered as the vertices of an
undirected graph G,. The edges of the graph describe the adjacency relations between the polygons on level /. Thus G, =(
V, E; ), where V, is the set of vertices, and E; is the set of edges. The derivation of G,.; from G, is formulated as
construction of an MST of G,. The built pyramid P is described as a set of graphs G, representing the image in a fine-to-
coarse hierarchy.

3.1 Construction of seed polygons

Polygons on the lowest (fine) level of a pyramid are built upon the triangular tessellation of the image. We employ the
image vectorization approach (Prasad, et al., 2006a, 2006b) to process the generated triangle grid. First, we detect edges
in the image, e.g. using Canny edge detector (Canny, 1986). This is followed by constrained Delaunay triangulation
(CDT) (Schewchuk, 1996) where the detected edges are used as constraints for the triangulation. Thus, the CDT
tessellation grid is adapted to the image content, since triangle vertices and edges reflect the structure and spatial



Fig. 2. Examples of triangle edge filtering based on proximity (left) and based on closure (right). Deleted triangle edges are
shown in blue, and the kept triangle edges (closing the gaps between Canny edges) are shown in cyan color.

adjacency of the detected edges. CDT generated triangular mesh is then processed by edge filtering. The filtering keeps
constraints (the detected edges) and selectively deletes generated triangle edges. Triangle edge filtering uses the
principles of visual perception, such as proximity and closure. Proximity filters out triangle edges based on their length
(Fig. 2, left). As a result, the detected edges that are spatially close to each other are linked by the kept shortest triangle
edge. The closure rule is responsible for filtering out triangle edges which are bounded by the same detected edge (e.g.,
“U”-shape) or the same pair of detected edges (Fig. 2, right). This results in a set of closed contours consisting of
combination of the generated triangle edges and spectrally detected edges. Finally, a graph traversal algorithm groups
triangles within the constructed closed contours into polygons. These polygons are assigned median color based on a
sampling of pixels covered by the grouped triangles. Thus the image is segmented in a set of spectrally attributed
polygons. The drastic reduction in the amount of data, number of pixels to number of generated polygons, by 20-80
times provides significant gains in computational efficiency for further analysis.

3.2 Hierarchical image segmentation

Building larger polygons on top of the produced seed polygons has the following advantage: agglomeration of polygons
will be implicitly directed in the sense that boundaries of agglomerated polygons will also be authentic to the image
spectral discontinuities. We extend our previous work (Skurikhin, 2008; Skurikhin et al, 2008) by taking into account
variogram-based estimation of spatial variation (Chica-Olmo et al, 2004).

Once the polygon-based image representation on the lowest level of a pyramid is produced, we iteratively group
polygons, sharing their contour fragments, on level / into larger polygonal chunks, producing level (/+1) of the image
pyramid (Fig. 3). Polygon agglomeration is based on Boruvka’s algorithm to construct MST. Boruvka’s algorithm
proceeds in a sequence of stages, and in each stage it identifies a forest F* consisting of the minimum-weight edge
incident to each vertex in the graph G, then forms the graph G, = G\F as the input to the next stage. G\F denotes the
graph derived from G by contracting edges in F .

The overall quality of segmentation depends on the pairwise polygon adjacency matrix, containing E,. The attributes of
edges are defined using three features: color similarity, AC;, variogram difference, Ay; and strength of the contour
segment separating polygons, P,. We evaluate the affinity w; between two neighboring polygons i and j:

AC, k- exp(P A ) if nmLODs < N,

"y P (1)
(ACU + A}’,j)' k -exp( %_),otherwise

w S k
k=1

where N, is the number of LODs that should be constructed before variogram term is taken into account, contour
segment shared by two neighboring polygons consists of N edge fragments (Fig. 4), S is the length of the shared contour
segment, s, is the length of the shared edge fragment belonging to a given contour fragment, £ and o control the scale of
polygons similarity, and m, is the magnitude of the shared edge segment. m, is 0 for triangle edge and non-zero for
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Fig. 3. Hierarchical image segmentation the produces an irregular pyramid of fine-to-coarse LODs. An example of
segmentation is shown on the right. Contours of the constructed patches are shown in red.
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Fig. 4. An example of the contour fragment shared by two neighboring polygons 4 and B. The shared contour fragment
consists of five edge fragments of corresponding lengths s, through s

spectrally detected edge. Thus the cost of merging two polygons separated only by triangle edges is less than the cost of
merging polygons separated by spectrally detected edges.

The algorithm constructs level (/+1) of a pyramid containing coarser image partitioning by running one Boruvka's
iteration on level / using the evaluated color, variogram, and contour relations between the polygons. Once a coarser
level is constructed, the color characterization of agglomerated polygons on level (/+1) is evaluated:

1+1 d A/: !
Gt =5 i Ci 3)
k=1 i

where M is the number of polygons merged into polygon 7 on level (/+1), C,.’ is the color of a polygon i on level /, Ail
is the area of a polygon 7 on level /.
The spatial layout of the polygons changes after each agglomeration iteration. As a result, the adjacency matrix

corresponding to level (/+1) is re-evaluated. This generation of coarser level based on finer level of a pyramid iteratively
goes until pre-specified dissimilarity threshold is exceeded.



3.3 Man-made objects cuing

Once the polygons constructed, structural feature extraction is performed across predefined number of LODs. The list of
the investigated features is shown in table 1. The same features can be used to bias the agglomeration process of MST
reconstruction by making grouping of two neighboring polygons having similar structural features (e.g. convexity close
to 1.) easier contrary to the neighboring polygons having only spectral similarity. Table 1 shows shape descriptors ,
which combination is used to detect man-made objects.

Table 1. Shape descriptors. 4: area of the polygon; P: perimeter of the polygon; Pconvex: perimeter of the convex hull;
Aconvex: area of the convex hull; Aholes: area occupied by holes inside the polygon; Atotal: total area of the polygon

including 4holes and A; [ : total length of the polygon evaluated based on the skeleton; Wske,elon :average width

skeleton
of the polygon evaluated based on the skeleton.

Parameter Name Formula Parameter Name Formula
Form factor 4.7 A/Pz Convexity /P
convex
Elongation =5 Solidi
& lskelelon wskeleton [y A/ Ac"""e)‘

Hole Fraction A / A Rectilinearity The presence of directional
s structures (e.g. contour fragments)
approximately 90° apart

Fig. 5. An example of hierarchic image segmentation. Left: a satellite image of the Yongbyon nuclear reactor in North
Korea, 806x762 pixels (credit: © DigitalGlobe). Center: segmented image on LOD=6, 191 polygons (outlined with red
contours). Right: segmented image on LOD=8, 161 polygons. Initial fine LOD=1 (not shown) contains 30,002

polygons.
3.4 Experimental results

The presented framework was preliminary evaluated using the Berkeley Segmentation dataset” and Digital Globe
satellite imagery. Figures 5 through 7 show some results of satellite image segmentation and man-made object cuing
using our framework. The results of man-made object cuing are shown using prespecified LODs. The challenge in
application of the structural analysis to the polygons lies in automated choice of LODs, on which the analysis has to be
applied to. Fine level of detail of a pyramid is constructed using Canny edge detector with the o¢an,y = 1., hysteresis low
threshold = 0., and hysteresis high threshold = 5. We use the Triangle code to generate triangular tessellatlon over the

http /I'www eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.cs.cmu.edu/~quake/triangle.html
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Fig. 6. An example of man-made object detection.

Top row. Left: a satellite image of the Yongbyon nuclear reactor in North Korea, 806x762 pixels (credit: DigitalGlobe).
Center: segmented image on LOD=8, 161 polygons (outlined with red contours). Right: result of man-made object
detection on LOD=8, detected man-made objects are shown in white color.

Bottom row. Left: a satellite image of Arak nuclear site in Iran, 15281487 pixels (credit: DigitalGlobe). Center: segmented
image on LOD=10, 1374 polygons (outlined with red contours). Right: result of man-made object detection on
LOD=10, detected man-made objects are shown in red color.

detected edge map. Color images were processed using either one of CIELab, CIELuv, or HSV spaces. N, is set to 2 to
create two coarser LODs on top of the fine LOD before variogram is taken into account. The results are shown for
CIELab space. Global threshold was set to 20 because the perceptually significant difference in color space is estimated
in the range [15, 30]. Scale parameters k£ and ¢ for adjacency relations were both set to 1. On average the produced
hierarchies contained 6-10 LODs.

Total complexity is O(NlogN + ViogE) (where N is number of used edge points, V' is number of initial polygons, E is
number of relations between the polygons), time consumed depends on how textured the image is; the more texture in
the mage, the more edges will be detected, the more time will be consumed.

4. CONCLUSIONS

We have developed and presented a segmentation framework to construct a fine-to-coarse hierarchy of irregular image
partitions that are utilized by structural analysis to detect man-made structures. Experimental results support the validity
of the proposed approach. It uses spectral, textural, and contour relations between polygons as criteria of their
agglomeration. Computational complexity of the algorithm makes it possible to use it for processing large images. The
outstanding problems are development of better texture characterization that is attributed to polygonal pixel patches,



automated choice of LODs to perform structural analysis, and adaptive thresholding of the agglomeration process by
taking into account both local and global image statistics.
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