Crystal Structure of Human XLF: A Twist in Nonhomologous DNA End-Joining
DNA double-strand breaks represent one of the most severe forms of DNA damage in mammalian cells. One pathway for repairing these breaks occurs via nonhomologous end-joining (NHEJ) and depends on XRCC4, LigaseIV, and Cernunnos, also called XLF. Although XLF stimulates XRCC4/LigaseIV to ligate mismatched and noncohesive DNA ends, the mechanistic basis for this function remains unclear. Here we report the structure of a partially functional 224 residue N-terminal fragment of human XLF. Despite only weak sequence similarity, XLF1-170 shares structural homology with XRCC41-159. However, unlike the highly extended 130 Angstroms helical domain observed in XRCC4, XLF adopts a more compact, folded helical C-terminal region involving two turns and a twist, wrapping back to the structurally conserved N terminus. Mutational analysis of XLF and XRCC4 reveals a potential interaction interface, suggesting a mechanism for how XLF stimulates the ligation of mismatched ends.
- Research Organization:
- Brookhaven National Laboratory (BNL) National Synchrotron Light Source
- Sponsoring Organization:
- Doe - Office Of Science
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 959938
- Report Number(s):
- BNL--82924-2009-JA
- Journal Information:
- Molecular Cell, Journal Name: Molecular Cell Journal Issue: 6 Vol. 28
- Country of Publication:
- United States
- Language:
- English
Similar Records
Analysis of diverse double-strand break synapsis with PolĪ» reveals basis for unique substrate specificity in nonhomologous end-joining