skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spectroscopic Studies of Perturbed T1 Cu Sites in the Multicopper Oxidases Saccharomyces Cerevisiae Fet3p And Rhus Vernicifera Laccase: Allosteric Coupling Between the T1 And Trinuclear Cu Sites

Journal Article · · Biochem.47:2036-2045,2008
OSTI ID:959358

The multicopper oxidases catalyze the 4e{sup -} reduction of O{sub 2} to H{sub 2}O coupled to the 1e{sup -} oxidation of 4 equiv of substrate. This activity requires four Cu atoms, including T1, T2, and coupled binuclear T3 sites. The T2 and T3 sites form a trinuclear cluster (TNC) where O{sub 2} is reduced. The T1 is coupled to the TNC through a T1-Cys-His-T3 electron transfer (ET) pathway. In this study the two T3 Cu coordinating His residues which lie in this pathway in Fet3 have been mutated, H483Q, H483C, H485Q, and H485C, to study how perturbation at the TNC impacts the T1 Cu site. Spectroscopic methods, in particular resonance Raman (rR), show that the change from His to Gln to Cys increases the covalency of the T1 Cu?S Cys bond and decreases its redox potential. This study of T1?TNC interactions is then extended to Rhus vernicifera laccase where a number of well-defined species including the catalytically relevant native intermediate (NI) can be trapped for spectroscopic study. The T1 Cu?S covalency and potential do not change in these species relative to resting oxidized enzyme, but interestingly the differences in the structure of the TNC in these species do lead to changes in the T1 Cu rR spectrum. This helps to confirm that vibrations in the cysteine side chain of the T1 Cu site and the protein backbone couple to the Cu?S vibration. These changes in the side chain and backbone provide a possible mechanism for regulating intramolecular T1 to TNC ET in NI and partially reduced enzyme forms for efficient turnover.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-76SF00515
OSTI ID:
959358
Report Number(s):
SLAC-REPRINT-2009-040; TRN: US200924%%702
Journal Information:
Biochem.47:2036-2045,2008, Vol. 47, Issue 7
Country of Publication:
United States
Language:
English