Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Influence of shockwave obliquity on deformation twin formation in Ta

Conference ·

Energetic loading subjects a material to a 'Taylor wave' (triangular wave) loading profile that experiences an evolving balance of hydrostatic (spherical) and deviatoric stresses. While much has been learned over the past five decades concerning the propensity of deformation twinning in samples shockloaded using 'square-topped' profiles as a function of peak stress, achieved most commonly via flyer plate loading, less is known concerning twinning propensity during non-I-dimensional sweeping detonation wave loading. Systematic small-scale energetically-driven shock loading experiments were conducted on Ta samples shock loaded with PEFN that was edge detonated. Deformation twinning was quantified in post-mortem samples as a function of detonation geometry and radial position. In the edge detonated loading geometry examined in this paper, the average volume fraction of deformation twins was observed to drastically increase with increasing shock obliquity. The results of this study are discussed in light of the formation mechanisms of deformation twins, previous literature studies of twinning in shocked materials, and modeling of the effects of shock obliquity on the evolution of the stress tensor during shock loading.

Research Organization:
Los Alamos National Laboratory (LANL)
Sponsoring Organization:
DOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
956433
Report Number(s):
LA-UR-09-00988; LA-UR-09-988
Country of Publication:
United States
Language:
English