Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

Technical Report ·
DOI:https://doi.org/10.2172/95225· OSTI ID:95225
 [1]
  1. National Renewable Energy Lab., Golden, CO (United States). Industrial Technologies Div.
The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus{trademark} to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product.
Research Organization:
National Renewable Energy Lab., Golden, CO (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC36-83CH10093
OSTI ID:
95225
Report Number(s):
NREL/TP--431-8143; ON: DE95009275
Country of Publication:
United States
Language:
English