Stability and reactivity of N2O in supercritical water.
The results of experiments examining the thermal decomposition of N{sub 2}O and its reactivity with methane in supercritical water at approximately 500 C and 30 MPa are presented. The rate of thermal decomposition is observed to be close to the rate predicted by extrapolating an Arrhenius expression from the literature that has been shown to be valid at 750 C and 1.0 MPa. The observed first-order rate constant at 500 C is 9.4 x 10{sup -6} s{sup -1}. There is no significant effect on N{sub 2}O stability due to the presence of supercritical water relative to ambient pressure. Measurements exploring the conversion rate of methane in the presence of N{sub 2}O reveal that simple oxidation chemistry competes with polymerization. The data suggest that much of the carbon in the system is converted to (CH{sub 2}){sub n} oligomers that separates from the supercritical phase. A detailed kinetic mechanism is used to explore characteristics of these competing processes.
- Research Organization:
- Sandia National Laboratories
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 952115
- Report Number(s):
- SAND2004-4578J
- Journal Information:
- Proposed for publication in Comustion Science and Technology., Journal Name: Proposed for publication in Comustion Science and Technology.
- Country of Publication:
- United States
- Language:
- English
Similar Records
Coal gasification with water under supercritical conditions
Kinetics of coal conversion in supercritical water