Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites

Conference ·
OSTI ID:946458

Leakage of CO{sub 2} and brine along faults at geologic carbon sequestration (GCS) sites is a primary concern for storage integrity. The focus of this study is on the estimation of the probability of leakage along faults or fractures. This leakage probability is controlled by the probability of a connected network of conduits existing at a given site, the probability of this network encountering the CO{sub 2} plume, and the probability of this network intersecting environmental resources that may be impacted by leakage. This work is designed to fit into a risk assessment and certification framework that uses compartments to represent vulnerable resources such as potable groundwater, health and safety, and the near-surface environment. The method we propose includes using percolation theory to estimate the connectivity of the faults, and generating fuzzy rules from discrete fracture network simulations to estimate leakage probability. By this approach, the probability of CO{sub 2} escaping into a compartment for a given system can be inferred from the fuzzy rules. The proposed method provides a quick way of estimating the probability of CO{sub 2} or brine leaking into a compartment. In addition, it provides the uncertainty range of the estimated probability.

Research Organization:
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US)
Sponsoring Organization:
Earth Sciences Division
DOE Contract Number:
AC02-05CH11231
OSTI ID:
946458
Report Number(s):
LBNL-1415E
Country of Publication:
United States
Language:
English

Similar Records

Risk assessment framework for geologic carbon sequestration sites
Conference · Sun Jan 31 23:00:00 EST 2010 · OSTI ID:983019

Characterizing fault-plume intersection probability for geologic carbon sequestration risk assessment
Conference · Sat Nov 01 00:00:00 EDT 2008 · OSTI ID:948499

Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration
Journal Article · Wed Jan 14 23:00:00 EST 2009 · International Journal of Greenhouse Gas Control · OSTI ID:959420