skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efects of pre-strain on the compressive stress-strain response of Mo-alloy single crystal micro-pillars

Journal Article · · Acta Materialia

A NiAl-Mo eutectic was directionally solidified to produce composites with well-aligned single-crystal Mo-alloy fibers embedded in a NiAl matrix. They were pre-strained by compressing along the fiber axis and then the matrix was etched away to expose free-standing micropillars having different sizes (360-1400 nm) and different amounts of pre-strain (0-11%). Compression testing of the pillars revealed a variety of behaviors. At one extreme were the as-grown pillars (0% pre-strain) which behaved like dislocation-free materials, with yield stresses approaching the theoretical strength, independent of pillar size. At the other extreme were pillars pre-strained 11% which behaved like the bulk, with reproducible stress-strain curves, relatively low yield strengths, stable work-hardening and no size dependence. At intermediate pre-strains (4-8%), the stress-strain curves were stochastic and exhibited considerable scatter in strength. This scatter decreased with increasing pre-strain and pillar size, suggesting a transition from discrete to collective dislocation behavior.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Shared Research Equipment Collaborative Research Center
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
937526
Journal Information:
Acta Materialia, Vol. 56, Issue 17; ISSN 1359-6454
Country of Publication:
United States
Language:
English