skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Triarylamine Siloxane Anode Functionalization/Hole Injection Layers in High Efficiency/High Luminance Small-Molecule Green- and Blue-Emitting Organic Light-Emitting Diodes

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.2719276· OSTI ID:930673

High efficiency/high luminance small-molecule organic light-emitting diodes (OLEDs) are fabricated by combining thin, covalently bound triarylamine hole injection/adhesion interlayers with hole- and exciton-blocking/electron transport interlayers in tris(8-hydroxyquinolato)aluminum(III) (Alq) and tetrakis(2-methyl-8-hydroxyquinolinato)borate (BQ{sub 4}{sup -})-based OLEDs. Green-emitting OLEDs with maximum luminance {approx}85 000 cd/m{sup 2}, power and forward external quantum efficiencies as high as 15.2 lm/W and 4.4{+-}0.5%, respectively, and turn-on voltages {approx}4.5 V are achieved in devices of the structure, ITO/N,N(prime)-diphenyl-N,N(prime)-bis(p-trichlorosilylpropylphenyl)(1,1(prime)-biphenyl)-4,4(prime)-diamine (TPD-Si2)/1,4-bis(1-naphthylphenylamino)biphenyl (NPB)/Alq doped with N,N(prime)-di(3-heptyl)quinacridone (DIQA)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/Li/AgMg. Also, bright and efficient blue-emitting OLEDs with turn-on voltages {approx}5.0 V, maximum luminance {approx}30 000 cd/m2, and {approx}5.0 lm/W and 1.6{+-}0.2% power and external forward quantum efficiencies, respectively, are achieved in devices of the structure, ITO/TPD-Si2/NPB/BQ{sub 4}{sup -}/BCP/Li/Al. TPD-Si2 interlayers are fabricated by spin casting N,N(prime)-diphenyl-N,N(prime)-bis(p-trichlorosilylpropylphenyl)(1,1(prime)-biphenyl)-4,4(prime)-diamine onto the ITO surface, while BCP interlayers are introduced by thermal evaporation. The excellent OLED performance is attributed to the differing functions of the above two interlayers: (1) The TPD-Si2 layer has a direct impact on hole injection by reducing the injection barrier and improving interfacial cohesion, and an indirect but strong effect on electron injection by altering internal electric fields. (2) The BCP layer, doped with lithium, directly reduces the electron injection barrier. Incorporation of both interlayers in OLED structures affords synergistically enhanced hole/electron injection and recombination efficiency. The results demonstrate a strategy to enhance OLED performance and an alternative strategy to increase electron density in electron-limited devices.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
930673
Report Number(s):
BNL-81180-2008-JA; JAPIAU; TRN: US200901%%175
Journal Information:
Journal of Applied Physics, Vol. 101; ISSN 0021-8979
Country of Publication:
United States
Language:
English