Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Probing the Flow-Induced Shish-Kebab Structure in Entangled Polyethylene Melts by Synchrotron X-ray Scattering

Journal Article · · Journal of Applied Crystallography
OSTI ID:930374
In-situ rheo small-angle X-ray scattering (SAXS) and rheo wide-angle X-ray diffraction (WAXD) techniques were used to investigate the flow-induced crystalline structure in entangled melts of ultrahigh-molecular-weight polyethylene (UHMWPE)/low-molecular-weight polyethylene (LMWPE) blends (0, 2 and 5 wt% of UHMWPE). Immediately after a step shear at 415 K, SAXS and WAXD results confirmed that only the shish structure was formed in the melts without kebabs. The topological deformation of entangled UHMWPE chains in the blend was responsible for the formation of shish. The missing kebab growth in the presence of shish indicated that secondary nucleation of coiled chains on the shish surface was frustrated at high temperatures close to the equilibrium melting temperature (418.5 K). When the temperature was quenched to 407 K, both blends (but not pure LMWPE) clearly exhibited oriented kebab growth. An Avrami analysis was applied to investigate the nucleation and growth of kebabs. Results indicated that kebabs were probably grown under athermal nucleation and diffusion-controlled conditions. In addition, the crystallization rate under predetermined nucleation was strongly governed by the concentration of shish.
Research Organization:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
AC02-98CH10886
OSTI ID:
930374
Report Number(s):
BNL--81096-2008-JA
Journal Information:
Journal of Applied Crystallography, Journal Name: Journal of Applied Crystallography Vol. 40; ISSN 0021-8898; ISSN JACGAR
Country of Publication:
United States
Language:
English