Carboxy-Terminus Recruitment Induced by Substrate Binding in Eukaryotic Fructose Bis-phosphate Aldolases
The crystal structures of Leishmania mexicana fructose-1,6-bis(phosphate) aldolase in complex with substrate and competitive inhibitor, mannitol-1,6-bis(phosphate), were solved to 2.2 {angstrom} resolution. Crystallographic analysis revealed a Schiff base intermediate trapped in the native structure complexed with substrate while the inhibitor was trapped in a conformation mimicking the carbinolamine intermediate. Binding modes corroborated previous structures reported for rabbit muscle aldolase. Amino acid substitution of Gly-312 to Ala, adjacent to the P{sub 1}-phosphate binding site and unique to trypanosomatids, did not perturb ligand binding in the active site. Ligand attachment ordered amino acid residues 359-367 of the C-terminal region (353-373) that was disordered beyond Asp-358 in the unbound structure, revealing a novel recruitment mechanism of this region by aldolases. C-Terminal peptide ordering is triggered by P{sub 1}-phosphate binding that induces conformational changes whereby C-terminal Leu-364 contacts P{sub 1}-phosphate binding residue Arg-313. C-Terminal region capture synergizes additional interactions with subunit surface residues, not perturbed by P1-phosphate binding, and stabilizes C-terminal attachment. Amino acid residues that participate in the capturing interaction are conserved among class I aldolases, indicating a general recruitment mechanism whereby C-terminal capture facilitates active site interactions in subsequent catalytic steps. Recruitment accelerates the enzymatic reaction by using binding energy to reduce configurational entropy during catalysis thereby localizing the conserved C-terminus tyrosine, which mediates proton transfer, proximal to the active site enamine.
- Research Organization:
- Brookhaven National Laboratory (BNL) National Synchrotron Light Source
- Sponsoring Organization:
- Doe - Office Of Science
- DOE Contract Number:
- AC02-98CH10886
- OSTI ID:
- 929939
- Report Number(s):
- BNL--80534-2008-JA
- Journal Information:
- Biochemistry, Journal Name: Biochemistry Vol. 46; ISSN 0006-2960
- Country of Publication:
- United States
- Language:
- English
Similar Records
High Resolution Reaction Intermediates of rabbit Muscle Fructose-1,6-bisphosphate Aldolase: Substrate Cleavage and Induced Fit
Charge Stabilization and Entropy Reduction of Central Lysine Residues in