skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Integrated Modeling Analysis of Unsaturated Flow Patterns inFractured Rock

Journal Article · · Hydrogeology Journal
OSTI ID:929002

Characterizing percolation patterns in unsaturated zones hasposed a greater challenge to numerical modeling investigations thancomparable saturated zone studies, because of the heterogeneous nature ofunsaturated media as well as the great number of variables impactingunsaturated zone flow. This paper presents an integrated modelingmethodology for quantitatively characterizing percolation patterns in theunsaturated zone of Yucca Mountain, Nevada, a proposed undergroundrepository site for storing high-level radioactive waste. It takes intoaccount the multiple coupled processes of air, water, heat flow andchemical isotopic transport in Yucca Mountain s highly heterogeneous,unsaturated fractured tuffs. The modeling approach integrates a widevariety of moisture, pneumatic, thermal, and isotopic geochemical fielddata into a comprehensive three-dimensional numerical model for modelinganalyses. Modeling results are examined against different types offield-measured data and then used to evaluate different hydrogeologicalconceptual models and their results of flow patterns in the unsaturatedzone. In particular, this integration model provides a much clearerunderstanding of percolation patterns and flow behavior through theunsaturated zone, both crucial issues in assessing repositoryperformance. The integrated approach for quantifying Yucca Mountain sflow system is also demonstrated to provide a comprehensive modeling toolfor characterizing flow and transport processes in complex subsurfacesystems.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Civilian Radioactive WasteManagement
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
929002
Report Number(s):
LBNL-57334; R&D Project: G713MI; BnR: YN1901000; TRN: US0803308
Journal Information:
Hydrogeology Journal, Vol. 15, Issue 3; Related Information: Journal Publication Date: 05/2007
Country of Publication:
United States
Language:
English