skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DIII-D Studies of Massive Gas Injection Fast Shutdowns for Disruption Mitigation

Conference ·
OSTI ID:897961

Injection of massive quantities of gas is a promising technique for fast shutdown of ITER for the purpose of avoiding divertor and first wall damage from disruptions. Previous experiments using massive gas injection (MGI) to terminate discharges in the DIII-D tokamak have demonstrated rapid shutdown with reduced wall heating and halo currents (relative to natural disruptions) and with very small runaway electron (RE) generation [1]. Figure 1 shows time traces which give an overview of shutdown time scales. Typically, of order 5 x 10{sup 22} Ar neutrals are fired over a pulse of 25 ms duration into stationary (non-disrupting) discharges. The observed results are consistent with the following scenario: within several ms of the jet trigger, sufficient Ar neutrals are delivered to the plasma to cause the edge temperature to collapse, initiating the inward propagation of a cold front. The exit flow of the jet [Fig. 1(a)] has a {approx} 9 ms rise time; so the quantity of neutrals which initiates the edge collapse is small (<10{sup 20}). When the cold front reaches q {approx} 2 surface, global magnetohydrodynamic (MHD) modes are destabilized [2], mixing hot core plasma with edge impurities. Here, q is the safety factor. Most (>90%) of the plasma thermal energy is lost via impurity radiation during this thermal quench (TQ) phase. Conducted heat loads to the wall are low because of the cold edge temperature. After the TQ, the plasma is very cold (of order several eV), so conducted wall (halo) currents are low, even if the current channel contacts the wall. The plasma current profile broadens and begins decaying resistively. The decaying current generates a toroidal electric field which can accelerate REs; however, RE beam formation appears to be limited in MGI shutdowns. Presently, it is thought that the conducted heat flux and halo current mitigation qualities of the MGI shutdown technique will scale well to a reactor-sized tokamak. However, because of the larger RE gain from avalanching and the presence of a RE seed population due to Compton-scattered fast electrons, it is possible that a RE beam can be formed well into the CQ, after the flux surfaces initially destroyed by the TQ MHD have had time to heal. Crucial MGI issues to be studied in present devices are therefore the formation, amplification, and transport of RE and the transport of impurities into the core plasma (important because the presence of impurities can, via collisional drag, help suppress RE amplification). In the study of impurity transport, both neutral delivery (directly driven into the core by the jet pressure) and ion delivery (mixed into the core by MHD) are of interest, as both contribute to RE drag. Here, three new results relevant to RE suppression from MGI are presented: (1) evidence is presented that neutral jet propagation is stopped by toroidal magnetic field pressure, (2) MGI appears to cause the CQ to begin before sufficient impurities have been injected for complete collisional suppression of RE, and (3) flux surface destruction over the region q {le} 2 occurs during the TQ. The first result suggests that neutrals cannot be delivered to the core of large tokamak discharges by MGI, even during the CQ. The second result indicates that (at least for argon MGI in DIII-D), insufficient impurities (either neutral or ion) are delivered for collisional suppression of RE at the start of the CQ. The last result suggests that the destruction of good field lines resulting from MGI is quite extensive and should be sufficient to prevent RE formation, at least at the start of the CQ.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
897961
Report Number(s):
UCRL-PROC-224897; TRN: US200706%%154
Resource Relation:
Conference: Presented at: 21st IAEA Fusion Energy Conference, Chengdu, China, Oct 16 - Oct 21, 2006
Country of Publication:
United States
Language:
English

Similar Records

DIII-D Studies of Massive Gas Injection Fast Shutdowns for Disruption Mitigation
Journal Article · Mon Jun 19 00:00:00 EDT 2006 · Proceedings of the 33rd EPS Conference on Plasma Physics, vol. 30I, n/a, December 31, 2006, P5.136 · OSTI ID:897961

Studies of Impurity Assimilation During Massive Argon Gas Injection in DIII-D
Journal Article · Wed Jun 27 00:00:00 EDT 2007 · Proceedings of the 34th EPS Conference on Plasma Physics, vol. 31F, na, July 2, 2007, P1.128 · OSTI ID:897961

Hyper-Velocity Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions
Technical Report · Thu Mar 28 00:00:00 EDT 2019 · OSTI ID:897961