skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fluorescence Anisotropy Studies of Molecularly Imprinted Polymers

Abstract

A molecularly imprinted polymer (MIP) is a biomimetic material that can be used as a biochemical sensing element. We studied the steady-state and time-resolved fluorescence and fluorescence anisotropy of anthracene imprinted polyurethane. We compared MIPs with imprinted analytes present, MIPs with the imprinted analytes extracted, MIPs with rebound analytes, non-imprinted control polymers (non-MIPs), and non-MIPs bound with analytes to understand MIP’s binding behavior. MIPs and non-MIPs had similar steady-state fluorescence anisotropy in the range of 0.11–0.24. Anthracene rebound in MIPs and non-MIPs had a fluorescence lifetime _=0.64 ns and a rotational correlation time _F =1.2–1.5 ns, both of which were shorter than that of MIPs with imprinted analytes present (_=2.03 ns and _F =2.7 ns). The steady-state anisotropy of polymer solutions increased exponentially with polymerization time and might be used to characterize the polymerization extent in-situ.

Authors:
; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
878268
Report Number(s):
PNNL-SA-48527
3532; KP1704020; TRN: US200611%%14
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Luminescence, 21(1):7-14; Journal Volume: 21; Journal Issue: 1
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANISOTROPY; ANTHRACENE; FLUORESCENCE; POLYMERIZATION; POLYURETHANES; Environmental Molecular Sciences Laboratory

Citation Formats

Chen, Yin-Chu, Wang, Zheming, Yan, Mingdi, and Prahl, Scott A. Fluorescence Anisotropy Studies of Molecularly Imprinted Polymers. United States: N. p., 2006. Web. doi:10.1002/bio.874.
Chen, Yin-Chu, Wang, Zheming, Yan, Mingdi, & Prahl, Scott A. Fluorescence Anisotropy Studies of Molecularly Imprinted Polymers. United States. doi:10.1002/bio.874.
Chen, Yin-Chu, Wang, Zheming, Yan, Mingdi, and Prahl, Scott A. 2006. "Fluorescence Anisotropy Studies of Molecularly Imprinted Polymers". United States. doi:10.1002/bio.874.
@article{osti_878268,
title = {Fluorescence Anisotropy Studies of Molecularly Imprinted Polymers},
author = {Chen, Yin-Chu and Wang, Zheming and Yan, Mingdi and Prahl, Scott A.},
abstractNote = {A molecularly imprinted polymer (MIP) is a biomimetic material that can be used as a biochemical sensing element. We studied the steady-state and time-resolved fluorescence and fluorescence anisotropy of anthracene imprinted polyurethane. We compared MIPs with imprinted analytes present, MIPs with the imprinted analytes extracted, MIPs with rebound analytes, non-imprinted control polymers (non-MIPs), and non-MIPs bound with analytes to understand MIP’s binding behavior. MIPs and non-MIPs had similar steady-state fluorescence anisotropy in the range of 0.11–0.24. Anthracene rebound in MIPs and non-MIPs had a fluorescence lifetime _=0.64 ns and a rotational correlation time _F =1.2–1.5 ns, both of which were shorter than that of MIPs with imprinted analytes present (_=2.03 ns and _F =2.7 ns). The steady-state anisotropy of polymer solutions increased exponentially with polymerization time and might be used to characterize the polymerization extent in-situ.},
doi = {10.1002/bio.874},
journal = {Luminescence, 21(1):7-14},
number = 1,
volume = 21,
place = {United States},
year = 2006,
month = 1
}
  • Molecularly imprinted polymers (MIPs) are used as highly enantioselective stationary phases in liquid chromatography. To optimize the binding performance of MIPs, different types of polar modifiers are frequently used. Previous studies have shown that the hydrogen-bonding donor parameter (HBD) of the modifier has a large influence on the binding performance of MIPs in chiral separations. This possibility is addressed in a detailed thermodynamic study of a Fmoc-l-tryptophan (Fmoc-l-Trp) imprinted polymer, eluted with four different polar modifiers, i.e., THF, propan-2-ol, methanol, and acetic acid, which have different HBDs (0.00, 0.33, 0.43, and 0.61, respectively). Adsorption isotherm data for each enantiomer inmore » each of these organic modifiers were acquired by frontal analysis over a 20000 dynamic concentration range. Nonlinear regression of the isotherm data, along with independent calculation of the affinity energy distributions, identified four different types of binding sites coexisting for the enantiomers on the MIP. The exception was acetic acid, which has the highest HBD. In this case, three types of binding sites only coexist on the MIP. The isotherm parameters obtained from these data show the following: (1) The association energies of the two enantiomers with a given type of sites have a similar magnitude; however, the density of the sites is higher for the template than for its antipode. (2) The nature of the organic modifier has a larger influence on the density of high-energy sites than on the association constant of these sites. (3) The molecular size of the organic modifier has a larger influence on the site density (especially for Fmoc-d-Trp) than does HBD. (4) Using an organic modifier with a higher HBD reduces the enantioselectivity on each site. (5) High-energy sites are more enantioselective than low-energy ones. (6) Using an organic modifier with a high HBD causes a larger reduction in the density of high-energy sites approached by the template molecules.« less
  • The effects of the organic modifier concentration on the isotherm parameters of the two enantiomers of Fmoc-tryptophan (Fmoc-l,d-Trp) on an Fmoc-l-Trp-imprinted polymer were investigated over a wide concentration range (0.005-100 mM), using frontal analysis. The modifier was acetic acid; concentrations of 0.2, 0.9, 1.7, and 3.7 M in an acetonitrile-based mobile phase were studied. At each concentration, adsorption isotherm data were acquired for each enantiomer. From these data, the isotherm parameters of each compound were derived from nonlinear isotherm fitting and the affinity energy distributions were calculated independently. We found that three types of sites coexist for Fmoc-l-Trp but onlymore » two types of sites for Fmoc-d-Trp, except at the lowest acetic acid concentration (0.2 M), at which three types of sites coexist. Increasing the acetic acid concentration decreases the selectivity and the overall affinity of both enantiomers. The overall affinity of Fmoc-l-Trp is dominated by the contribution of the low-density highest energy sites while that of Fmoc-d-Trp is dominated by the most abundant, low-energy sites. For the low-energy sites, increasing the acetic acid concentration affects the association constant of the enantiomers more than the number of corresponding sites. In contrast, for the highest energy sites (sites that exist only for Fmoc-l-Trp), increasing the concentration of acetic acid affects significantly the number of sites but hardly changes the association constant.« less
  • Experimental isotherm data of the Fmoc-tryptophan (Fmoc-Trp) enantiomers were measured by frontal analysis on a Fmoc-L-Trp imprinted polymer, using different organic mobile phases, in a wide concentration range. The nonlinear regression of the data and the independent calculation of the affinity energy distributions of the two enantiomers allowed the selection of the isotherm model and the determination of the isotherm parameters. The organic solvents studied were acetonitrile (MeCN), methylene chloride, chloroform, and tetrahydrofuran (THF), all in the presence of the same concentration of acetic acid, used as an organic modifier. It was found that the highest overall affinity and enantiomericmore » selectivity were obtained in MeCN, which is also the solvent used in the polymerization. In the other solvents, the overall affinity decreases with increasing hydrogen-bonding ability of the solvents but not the enantiomer selectivity. In MeCN, three types of adsorption sites coexist for the two enantiomers on the MIP. The highest energy sites for Fmoc-L-Trp in MeCN are inactive in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF, and only two types of sites were identified in these solvents. Increasing the acetic acid concentration from 0.2 to 0.9 M causes a large decrease in the association constant of the highest energy sites in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF but not in MeCN. The overall affinity of Fmoc-L-trp in CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF is dominated by adsorption on the lowest energy sites, the most abundant ones. In contrast, in MeCN, the overall affinity of Fmoc-L-Trp is dominated by adsorption on the highest energy sites, the least abundant sites. In CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and THF, the number of each type of sites increases with decreasing hydrogen-bonding ability of the solvents while the association constant of the corresponding sites does not change significantly.« less
  • Molecularly imprinted polymers (MIPs) are used as recognition elements in biochemical sensors. In a fluorescence-based MIP sensor system, it is difficult to distinguish the analyte fluorescence from the background fluorescence of the polymer itself. We studied steady-state fluorescence anisotropy of anthracene imprinted in a polymer (polyurethane) matrix. Vertically polarized excitation light was incident on MIP films coated on silicon wafers; vertically and horizontally polarized emission was measured. We compared the fluorescence anisotropy of MIPs with imprinted molecules, MIPs with the imprinted molecules extracted, MIPs with rebound molecules, and nonimprinted control polymers (without binding cavities). It is shown that differences inmore » fluorescence anisotropy between the polymers and imprinted fluorescent molecules may provide a means to discriminate the fluorescence of analyte from that of the background polymer.« less
  • The mass transfer kinetics of the L- and D-Fmoc-Tryptophan (Fmoc-Trp) enantiomers on Fmoc-L-Trp imprinted polymer (MIP) and on its reference polymer (NIP), were measured using their elution peak profiles and the breakthrough curves recorded in frontal analysis for the determination of their equilibrium isotherms, at temperatures of 40, 50, 60, and 70 C. At all temperatures, the isotherm data of the Fmoc-Trp enantiomers on the MIP were best accounted for by the Tri-Langmuir isotherm model, while the isotherm data of Fmoc-Trp on the NIP were best accounted for by the Bi-Langmuir isotherm model. The profiles of the elution bands ofmore » various amounts of each enantiomer were acquired in the concentration range from 0.1 to 40 mM. These experimental profiles were compared with those calculated using the best values estimated for the isotherm parameters and the lumped pore diffusion model (POR), which made possible to calculate the intraparticle diffusion coefficients for each system. The results show that surface diffusion contributes predominantly to the overall mass transfer kinetics on both the MIP and the NIP, compared to external mass transfer and pore diffusion. The surface diffusion coefficients (D{sub s}) of Fmoc-L-Trp on the NIP does not depend on the amount bound (q) while the values of D{sub s} for the two Fmoc-Trp enantiomers on the MIP increase with increasing q at all temperatures. These positive dependencies of D{sub s} on q for Fmoc-Trp on the MIP were fairly well modeled by indirectly incorporating surface heterogeneity into the surface diffusion coefficient. The results obtained show that the mass transfer kinetics of the enantiomers on the imprinted polymers depend strongly on the surface heterogeneity.« less