Micromechanical potentiometric sensors
Abstract
A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.
- Inventors:
-
- Knoxville, TN
- Publication Date:
- Research Org.:
- LOCKHEED MARTIN ENERGY RES COR
- OSTI Identifier:
- 872823
- Patent Number(s):
- US 6016686
- Assignee:
- Lockheed Martin Energy Research Corporation (Oak Ridge, TN)
- DOE Contract Number:
- AC05-96OR22464
- Resource Type:
- Patent
- Country of Publication:
- United States
- Language:
- English
- Subject:
- micromechanical; potentiometric; sensors; microcantilever; sensor; utilized; detecting; measuring; physical; chemical; parameters; sample; media; described; microcantilevered; spring; element; coating; coated; region; accumulates; surface; charge; response; hydrogen; redox; potential; concentrations; monitored; accumulation; differing; opposing; creates; mechanical; stress; deflection; multitude; detection; methods; laser; light; source; focused; photo-sensitive; detector; receiving; reflected; impulses; approximately; 100; 50; wide; thick; accuracy; deflections; cantilever; provided; range; 01; nanometers; apparatus; method; require; microliters; placed; near; extremely; sensitive; measured; chemical coating; surface charge; extremely sensitive; detection methods; detection method; spring element; light source; laser light; sensitive detector; measuring physical; reflected laser; microcantilevered spring; mechanical stress; chemical parameters; opposing surface; chemical parameter; /73/422/436/
Citation Formats
Thundat, Thomas G. Micromechanical potentiometric sensors. United States: N. p., 2000.
Web.
Thundat, Thomas G. Micromechanical potentiometric sensors. United States.
Thundat, Thomas G. Sat .
"Micromechanical potentiometric sensors". United States. https://www.osti.gov/servlets/purl/872823.
@article{osti_872823,
title = {Micromechanical potentiometric sensors},
author = {Thundat, Thomas G},
abstractNote = {A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.},
doi = {},
url = {https://www.osti.gov/biblio/872823},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2000},
month = {1}
}