skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recovery of germanium-68 from irradiated targets

Abstract

A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

Inventors:
 [1];  [1];  [1]
  1. (Los Alamos, NM)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM
OSTI Identifier:
868682
Patent Number(s):
US 5190735
Assignee:
United States of America as represented by United States (Washington, DC) LANL
DOE Contract Number:
W-7405-ENG-36
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
recovery; germanium-68; irradiated; targets; process; selective; separation; proton; molybdenum; provided; dissolving; target; hydrogen; peroxide; solution; form; ion-containing; contacting; cationic; resin; whereby; selected; consisting; niobium; technetium; selenium; vanadium; arsenic; germanium; zirconium; rubidium; remain; zinc; beryllium; cobalt; iron; manganese; chromium; strontium; yttrium; selectively; adsorbed; adjusting; ph; range; soluble; metal; halide; concentration; level; adapted; subsequent; ph-adjusted; halide-containing; dextran-based; material; separated; recovering; preferably; distillation; subsequent separation; cationic resin; material whereby; irradiated molybdenum; irradiated target; hydrogen peroxide; selective separation; metal halide; ion-containing solution; soluble metal; dextran-based material; resin whereby; proton irradiated; rubidium remain; selectively adsorbed; molybdenum targets; molybdenum target; peroxide solution; containing solution; irradiated targets; oxide solution; /423/210/376/

Citation Formats

Phillips, Dennis R., Jamriska, Sr., David J., and Hamilton, Virginia T. Recovery of germanium-68 from irradiated targets. United States: N. p., 1993. Web.
Phillips, Dennis R., Jamriska, Sr., David J., & Hamilton, Virginia T. Recovery of germanium-68 from irradiated targets. United States.
Phillips, Dennis R., Jamriska, Sr., David J., and Hamilton, Virginia T. 1993. "Recovery of germanium-68 from irradiated targets". United States. doi:. https://www.osti.gov/servlets/purl/868682.
@article{osti_868682,
title = {Recovery of germanium-68 from irradiated targets},
author = {Phillips, Dennis R. and Jamriska, Sr., David J. and Hamilton, Virginia T.},
abstractNote = {A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1993,
month = 1
}

Patent:

Save / Share:
  • A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to withinmore » a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.« less
  • This invention is comprised of a process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium,vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the secondmore » ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.« less
  • A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to withinmore » a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.« less
  • The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel.more » NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.« less
  • A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to withinmore » a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.« less