Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Tritiated Amorphous Silicon: Insights into the Staebler-Wronski Mechanism

Conference ·
OSTI ID:860694

Hydrogen, though essential for device-quality amorphous silicon, likely contributes to the light-induced degradation process (Staebler-Wronski effect) that reduces the solar cell efficiency by about 4 absolute percent. We are testing the role of hydrogen by using its isotope tritium. When tritium bonded to Si spontaneously decays into inert helium-3, it should leave behind the Si dangling bond defect. We have studied degradation due to tritium and note its resemblance to the Staebler-Wronski effect. Surprisingly, 100x fewer defects are created than expected from the tritium decay rate, suggesting a mechanism that heals most of the defects, even at temperatures down to 4 K. We consider different mechanisms for the thermal and athermal healing processes (e.g. motion of hydrogen, effect of beta-electrons, decay of hydrogen-tritium molecules). Our findings shed new light on the degradation mechanism in a Si:H and help reveal the role of hydrogen and structural rearrangements near a newly created defect.

Research Organization:
National Renewable Energy Laboratory (NREL), Golden, CO.
Sponsoring Organization:
USDOE
DOE Contract Number:
AC36-99GO10337
OSTI ID:
860694
Report Number(s):
NREL/CP-520-37023
Country of Publication:
United States
Language:
English