skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Airflow design for cleanrooms and its economic implications

Conference ·
OSTI ID:832942

A cleanroom is designed to control the concentration of airborne particles. As a result, large amount of cleaned air is often required to remove or dilute contaminants for satisfactory operations in critical cleanroom environment. Cleanroom environmental systems (HVAC systems) in semiconductor, pharmaceutical, and healthcare industries are much more energy intensive compared to their counterparts (HVAC systems) serving commercial buildings such as typical office buildings. There is a tendency in cleanroom design and operation, however, to provide excessive airflow rates by HVAC systems, largely due to design conservatism, lack of understanding in airflow requirements, and more often, concerns such as cleanliness reliability, design and operational liabilities. A combination of these likely factors can easily result in HVAC systems' over-design. Energy use of cleanroom environmental systems varies with the system design, cleanroom functions, and critical parameter control including temperatures and humidities. In particular, cleanroom cleanliness requirements specified by ''cleanliness class'' [1],[2] often cast large impact on energy use. A review of studies on cleanroom operation costs indicated that energy costs could amount to 65-75% of the total annual cost associated with cleanroom operation and maintenance in some European countries[3]. Depending on cleanroom cleanliness classes, annual cleanroom electricity use for cooling and fan energy ranged approximately between 1,710 kWh/m{sup 2} and 10,200 kWh/m{sup 2} (or 160 kWh/ft{sup 2} and 950 kWh/ft{sup 2}) in California[4], USA. Cleanroom fan energy use typically consumed half of total HVAC energy use in three states in the USA[5]. For cleanrooms in a wafer-process semiconductor factory in Japan[6], HVAC systems used 43% of power consumption of an entire cleanroom factory, while air delivery systems account for 30% of the total power consumption. Fan energy use for cleanrooms of ISO Classes 3,4,5 collectively account for approximately 80% of the fan energy use for cleanrooms of all classes[7]. It is evident that biggest factors dictating cleanroom operating energy costs often include the magnitude of cleanroom airflow and how efficiently the HVAC systems deliver the cleaned and conditioned air to cleanrooms. Since energy generally represents a significant operating cost for cleanroom facilities, improving energy efficiency in cleanrooms can potentially contribute to significant cost savings. Because the number of cleanrooms in the world has been growing rapidly in the last decade and involves many industries, improvement in energy efficiency is becoming more important. Even during economy downturns, with industry profit margins lessening, the ratio of cleanroom energy costs to a company's profits naturally increases. This can lead to a higher return of investment if cleanroom owners and engineers effectively take appropriate energy efficiency measures. While effective contamination control is the main purpose to operate a cleanroom, how to achieve efficient contamination control operations in cleanrooms presents constant challenges to many engineers in the industries. This paper examines how the real environmental systems in ISO Cleanliness Class-5 cleanrooms actually performed, in terms of airflow and energy use required by fan systems, and presents opportunities and benefits in energy efficient cleanroom designs. The objectives of this paper are to (1) present performance analysis for HVAC systems in seven ISO Cleanliness Class-5 cleanrooms; (2) identify ways to increase cleanroom energy efficiency, while achieving effective cleanroom contamination control; and (3) illustrate benefits of energy efficient cleanroom designs.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Energy Efficiency and Renewable Energy (US)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
832942
Report Number(s):
LBNL-51549; R&D Project: 884602; TRN: US200429%%1693
Resource Relation:
Conference: 5th China International Academic Forum and Products Exposition on Contamination Control Technology, Beijing (CN), 11/27/2002--11/29/2002; Other Information: PBD: 20 Aug 2002
Country of Publication:
United States
Language:
English