EFFECTS OF HETEROGENEITY ON THE STRENGTH OF 3D COMPOSITES
Monte Carlo simulation interpreted with theoretical modeling is used to study the statistical failure modes in unidirectional composites consisting of a hexagonal array of elastic fibers embedded in an elastic matrix. Composite structure is idealized using the chain-of-bundles model in terms of bundles of length {delta} arranged along the fiber direction. Fibers element strengths in {delta}-bundles are taken to be Weibull distributed and Hedgepeth and Van Dyke load sharing is assumed for transverse fiber break arrays. Simulations of {delta}-bundle failure reveal two regimes. When fiber strength variability is low, the dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability is high, cluster formation is suppressed by a more dispersed fiber failure mode. Corresponding to these two cases, they construct simple models that predict the strength distribution of a {delta}-bundle. Their predictions compare very favorably with simulations in the two cases.
- Research Organization:
- Los Alamos National Lab., NM (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 774568
- Report Number(s):
- LA-UR-01-843
- Country of Publication:
- United States
- Language:
- English
Similar Records
Bounds on the strength distribution of unidirectional fiber composites
Bounds on the Strength Distribution of Unidirectional Fiber Composites