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ABSTRACT

Monte Carlo simulation interpreted with theoretical modeling is used to study the statistical fail-
ure modes in unidirectional composites consisting of a hexagonal array of elastic fibers embedded
in an elastic matrix. Composite structure is idealized using the chain-of-bundles model in terms
of bundles of length § arranged along the fiber direction. Fibers element strengths in §-bundles
are taken to be Weibull distributed and Hedgepeth and Van Dyke load sharing is assumed for
transverse fiber break arrays.

Simulations of §-bundle failure reveal two regimes. When fiber strength variability is low, the
dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability
is high, cluster formation is suppressed by a more dispersed fiber failure mode. Corresponding to
these two cases, we construct simple models that predict the strength distribution of a d-bundle.
Their predictions compare very favorably with simulations in the two cases.
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INTRODUCTION

Quasistatic failure of unidirectional composite materials, which consist of long aligned reinforcing
fibers embedded in a matrix is a complex stochastic process. While complexity stems from the
occurrence of various damage events preceding formation of a catastrophic crack, statistical vari-
ation in strength primarily arises due to the variability in fiber strength. Consequently composite
tensile strength is itself a statistical quantity and methods to determine its distribution are of
considerable significance in assuring composite reliability.

Idealization of composite structure and material properties are found to be inevitable before
further analysis can be attempted. In this study we assume stiff linear elastic fibers arranged in



a hexagonal array and embedded in a relatively compliant linear elastic non-debonding matrix
so that material damage in our idealized composite is limited to fiber breakages alone. The large
fiber-matrix stiffness ratio implies that most of the applied load will be borne by the fibers and
the role of the matrix is limited to conducting loads from broken fibers to nearby intact fibers.
This load transfer occurs through shear deformation that tends to occur over a certain length
scale §. ¢ is typically only a few fiber diameters and is much less than the composite length L.

As has been common in the literature, we idealize the failure process in terms of a longitudinal
partition into m = L/é transverse slabs or short bundles of length ¢, called §-bundles. The
failure process within a given J-bundle is treated as mechanically and statistically independent,
of that in neighboring d-bundles. The composite is then treated as a weakest-link arrangement
of these d-bundles; that is, the composite fails when the weakest d-bundle fails. Thus the chain-
of-bundles assumption converts the 3D problem of composite failure into the problem of failure
of the weakest of several 2D J-bundles. We also assume that fiber strength X is random and
distributed according to the Weibull distribution

F(2) = Pr{X < 0} = 1 — exp{—(0/05)"} (1)

where o is the stress experienced by the fiber, o5 is the scale parameter for a fiber element of
length ¢ and p the shape parameter of the distribution.

We use Hedgepeth and Van Dyke’s [1] local load sharing model (HVLLS) to determine stress
concentrations in the plane of a tranverse array of fiber breaks. While we do not delve into
the details of their approach, we note that under HVLLS, the stress concentration around a
penny-shaped crack of r fiber breaks is approximately

20 /r D

where D is the effective diameter of the penny-shaped crack and r = 7D?/4. Also, as the crack
size becomes large, the stress concentration decays as 1/+/¢ in the near-field where ¢ is distance
from the crack tip and shares this characteristic of the near-tip stress field with LEFM.

The in-plane failure of our d-bundle is idealized as follows. Consider a rhombus-shaped patch of
s? hexagonally-arranged Weibull fibers subjected to a load just sufficient to fail the weakest fiber.
Numerical stress redistribution is computed using HVLLS. If the resulting fiber stresses exceed
the strengths of any other fibers then these too are converted to failures and stress redistribution
for the new configuration is computed. This back-and-forth process of fiber failures and stress
redistribution is continued until either stability is reached or the J-bundle fails. In the case of
stability, a load increment is applied to the J-bundle that is just enough to fail another fiber, and
the above process of stress redistribution and further fiber failures is repeated. Eventually, after
some applied load increment, a cascade of fiber failures occurs as the d-bundle fails catastrophi-
cally. The resulting applied fiber stress becomes the strength of the d-bundle. We now proceed to
describe dominant failure mechanisms of composite failure observed in simulations and to model
them in order to analytically predict the statistical strength distribution of composite strength.

FAILURE MECHANISMS AND MODELS IN -BUNDLES
1. Small Variability in Fiber Strength (large p)

Snapshots of the damage evolution in the p = 10 median (among 500 simulations) d-bundle en
route to failure are shown in Figure 1. The last stage shown corresponds to the arrangement



of breaks immediately after the formation of an unstable system of fiber breaks and before the
catastrophic failure of the remaining fibers. Note that the boundary conditions are periodic so
that a break cluster appearing at one edge may be continued on the opposite edge. Cluster
formation and growth is clearly the dominant failure mode in the specimen shown.
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Figure 1: Snapshots of the failure process in the median (among 500 simulations) §-bundle with 900
Weibull fibers of p = 10 under periodic boundary conditions. Open circles () denote intact fibers, &)
denote broken fibers.

Following Harlow and Phoenix [2], we have plotted the empirical weakest-link distributions
Wa(0) =1~ [1 = Gu(0))]/" (3)

on Weibull paper, in Figure 2 obtained from our Monte-Carlo simulations of failure of §-bundles
under HVLLS. Here G,, denotes the empirical strength distribution of the n-fiber j-bundle. For
p > 2 the W, (o) curves for n = 225, 625 and 900 collapse onto one characteristic curve W (o).
This n-independent collapse however fails to hold for p = 1. The collapse of W, into a single
curve for p > 2 suggests that the cluster growth failure mode is active for p range in the composite
sizes that were simulated.

We model the cascade event defining W (o) as the formation of a break cluster at stress o that
goes unstable. The diameter D of a tight circular cluster of r breaks was defined earlier as
7D?/4 = r. The circumference of the circle, 7D = v/4xr is approximately the number of intact
fibers surrounding this r-cluster. Let N, be the number of these neighbors that are severely
overloaded. The first step is the failure of a given fiber in the J-bundle under o, followed by the
failure of one of its N; = 6 equally overloaded neighbors under stress K;o. The resulting pair
of fiber breaks has eight intact neighbors of which only N, = 2 are severely overloaded under
stress Ky0. The next likely event is the failure of one of these, to form a break triplet with
N3 = 3 severely overloaded neighbors, of which one fails, and so on. The critical event is thus
the evolution of a growing “tight” r-cluster, with each added break being the failure of one of
the N, severely overloaded fibers surrounding it. We write this as

Wa(o) & F(o){1 - [1 — F(Ki0)]"'}

N3 Np_1 (4)
x {1 —[1—F(K0)]} - {1 —[1 = F(Kyp10)]"" 1},
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Figure 2: Comparison of the weakest link distribution predicted by the 2D cluster growth model with
the empirical weak link distributions W(J;) obtained from Monte-Carlo simulations. Model 1 assumes
n = V4r and v = 0.5 for all p. In Model 2, we adjust the parameters 7 and 7 so as to get the best
fit with the simulated data. These values of 7 and -~y are listed in the bottom right corner. Weakest
link distributions corresponding to p = 0.5 are not shown because both Model 1 and Model 2 predict
distributions that are out of the range of this plot. Also omitted is the Model 1 line for p = 1 which
also lies outside the range of this plot.

where K, is the stress concentration on the NN, most severely overloaded neighbors of a tight
r-cluster and is given by Eqn. 2. We introduce two parameters, n and -y, to account for the actual
number of fibers at high risk of failure. Let

N, =nr’ (5)

be the number of severely overloaded neighbors around an r-cluster, where n > 0 and 0 < v < 1/2.
We find this structure for NV, to be essential in order that W, (o) in Eqn. 4 agree with the form
of the simulated W (o) distribution especially for small p. Taking n = V47 ~ 3.55 and y = 1/2,
implies counting all the fibers on the cluster periphery to be at risk of failure. Model 1 lines in
Figure 2 correspond to this case and do not fit the simulated W(U) very well. However model 2
lines in which we vary 5 and ~ as functions of p fit the simulated W (o) much better. A closed
form approximation for W (o) is derived in [5].

2. Large Variability in Fiber Strength (small p)

When p is small corresponding to large variability in fiber strength, the cluster-driven breakdown
mechanism is dominated by a dispersed, strength-driven breakdown mechanism of the §-bundle.
This is clearly seen in the failure snapshots of a §-bundle for p = 1, as shown in Figure 3.

In the case of dispersed fiber failure in a J-bundle, the details of the fiber load-sharing model may
not be important provided that the model conserves load. Thus we consider behavior under the
equal load-sharing rule or ELS. ELS assumes that the stress concentration factor for each intact
fiber in an n-fiber d-bundle with j broken fibers is k,; = n/(n — j). Applying a result due to
Smith [3] which sharpens one due to Daniels [4] to an ELS bundle of Weibull fibers we find that
the bundle strength distribution G,,(0) converges as n — 0o, to the normal form ®((o — p)/s%)
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Figure 3: Snapshots of the failure process in the median (among 500 simulations) d-bundle specimen
with 900 Weibull fibers of p = 1 under periodic boundary conditions. Open circles () denote intact
fibers, @ denote broken fibers.

with asymptotic mean
i = os(pe)”He {1 + 0.996n~2/3 (62/”//))1/3} (6)

and asymptotic standard deviation

st = gan " H2p1/P \/6_1/”(1 —e~1/p). (7)

2a. Global/Local Model

Unlike in ELS, wherein material damage accrues globally, we speculate that in HVLLS there is a
p-dependent size scale within which damage accumulates in a dispersed manner and propagates
catastrophically from there. That is, failure initiates over m = n/n bundles of 7 fibers in an
ELS-like manner within a localized region and propagates catastrophically from there resulting
in composite strength distribution

Gu(0) =1—{1—[(0 — p3)/s3)]}™, (8)

In Figure 4, for highly variable fibers with p = 1, 2, 3, and 5 we have plotted the strength
distribution of the smallest sized d-bundle (n; x n1) to which weak-linked distributions of larger
bundles collapse. This smallest §-bundle size approximately corresponds to the critical cluster
size defined previously. We also show the distributions of larger bundles of size (ny X ng) or
(n3 X n3) weak-linked to the size (n; X ny). Note that as p decreases, these weak-linked distribu-
tions become increasingly Gaussian (indicated by the straightness of the strength distribution on
normal coordinates) and are better approximated by the ELS asymptotic distribution. Despite
the excellent agreement of the 900-fiber, weak-linked strength distribution with the 625-fiber,
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Figure 4: Comparison of ®((c — u},)/s;,) given by Daniel’s asymptotic formula for ELS bundles with
simulated strength G,(0) of an n = n; x n; HVLLS d-bundle. Also shown are empirical strength
distributions of larger d-bundles weak linked to the size n1 X n1 in agreement with those of the ni x n;
d-bundle.

weak-linked distribution when p = 0.5, it turns out that they do not agree with a 2500-fiber,
weak-linked d-bundle strength distribution. This suggests that the smallest catastrophic failure
event of the bundle occurs over more than 625 or perhaps even 900 fibers.

CONCLUSIONS

In Eqn. 4, we give the weakest-link characteristic distribution function W (o) for 6-bundles. These
bundles are links in the chain-of-bundles model for the failure of 3D unidirectional composites.
For sufficiently large Weibull modulus p, say p > 4 in 3D composites, the strength distribution
of a composite of length L = md and with n fibers is H, ,(z) = 1 — (1 — W(x))™. For p < 4,
however, we observe that the details of the load-sharing become increasingly unimportant, and
the é-bundle strength distribution for fixed n is not only increasingly Gaussian up to quite large
n but also converges to that for ELS whose analytical form is known. For fixed p, however, this
Gaussian nature is expected to persist only up to a é-bundle size of the order of the critical cluster
size. For composites beyond this critical size the distribution function for J-bundle strength is
that for a chain of Gaussian ‘patches’ of n fibers in the d-bundle. Thus the composite can be
viewed as a weakest-link arrangement of mn such Gaussian patches.
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