skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evolving the Web-Based Distributed SI/PDO Architecture for High-Performance Visualization

Conference ·
OSTI ID:761871

The Simulation Intranet/Product Database Operator (SI/PDO) project has developed a Web-based distributed object architecture for high performance scientific simulation. A Web-based Java interface guides designers through the design and analysis cycle via solid and analytical modeling, meshing, finite element simulation, and various forms of visualization. The SI/PDO architecture has evolved in steps towards satisfying Sandia's long-term goal of providing an end-to-end set of services for high fidelity full physics simulations in a high-performance, distributed, and distance computing environment. This paper describes the continuing evolution of the architecture to provide high-performance visualization services. Extensions to the SI/PDO architecture allow web access to visualization tools that run on MP systems. This architecture makes these tools more easily accessible by providing web-based interfaces and by shielding the user from the details of these computing environments. The design is a multi-tier architecture, where the Java-based GUI tier runs on a web browser and provides image display and control functions. The computation tier runs on MP machines. The middle tiers provide custom communication with MP machines, remote file selection, remote launching of services, load balancing, and machine selection. The architecture allows middleware of various types (CORBA, COM, RMI, sockets, etc.) to connect the tiers depending upon the situation. Testing of constantly developing visualization tools can be done in an environment where there are only two tiers which both run on desktop machines. This allows fast testing turnaround and does not use compute cycles on high-performance machines. Once the code and interfaces are tested, they are moved to high-performance machines, and new tiers are added to handle the problems of using these machines. Uniform interfaces are used throughout the tiers to allow this flexibility. Experiments test the appropriate level of interface: either a large set of specific function calls or a small set of generic function calls. This architecture is based on the goals and constraints of the environment: huge data volumes (that cannot be easily moved), use of multiple middleware protocols, MP platform portability, rapid development of the visualization tools, distributed resource management (of MP resources), and the use of existing visualization tools.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
761871
Report Number(s):
SAND2000-2071C; TRN: AH200033%%6
Resource Relation:
Conference: International Conference on Web-Based Modeling and Simulation, Phoenix, AZ (US), 01/07/2001--01/11/2001; Other Information: PBD: 16 Aug 2000
Country of Publication:
United States
Language:
English