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ABSTRACT

The Simulation Intranet/Product Database Operator
(SI/PDO) project has developed a Web-based
distributed object architecture _for high performance
scientific simulation. A Web-based Java interface
guides designers through the design and analysis
cycle via solid and analytical modeling, meshing,
finite element simulation, and various forms of
visualization. The SI/PDQ architecture has evolved
in steps towards satisfying Sandia's long-term goal of
providing an end-to-end set of services for high
fidelity full physics simulations in a high-
performance, distributed, and distance computing
environment. This paper describes the continuing
evolution of the architecture to provide high-
performance visualization services.

Extensions to the SI/PDO architecture allow web
access 1o visualization tools that run on MP systems.
This architecture makes these tools more easily
accessible by providing web-based interfaces and by
shielding the user from the details of these computing
environments. The design is a multi-tier architecture,
where the Java-based GUI tier runs on a web
browser and provides image display and control
Jfunctions. The computation tier runs on MP
machines. The middle tiers provide custom
communication with MP machines, remote file
selection, remote launching of services, load
balancing, and machine selection. The architecture

allows middleware of various types (CORBA, COM,
RMI, sockets, etc) to connect the tiers using adapters.
The system allows for adding and removing of tiers
depending upon the situation. Testing of constantly
developing visualization tools can be done in an
environment where there are only two tiers which
both run on desktop machines. This allows fast
testing turnaround and does not use compute cycles
on high-performance machines. Once the code and
interfaces are tested, they are moved to high-
performance machines, and new tiers are added to
handle the problems of using these machines.
Uniform interfaces are used throughout the tiers to
allow this flexibility. FExperiments test the
appropriate level of interface: either a large set of
specific function calls or a small set of generic
Jfunction calls. This architecture is based on the
goals and constraints of our environment: huge data
volumes (that cannot be easily moved), use of
multiple middleware protocols, MP platform
portability, rapid development of the visualization
tools, distributed resource management (of MP
resources), and the use of existing visualization tools.

1. INTRODUCTION

High fidelity full physics simulations require the
fastest available computers. These machines contain
protected environments and are often hard to use
because of compromises made for performance.
Historically at Sandia, users access these machines
directly and follow their rules to run top-of-the-line
simulations. Recent developments in networking,
interfaces, and distributed computing are helping to
improve this situation. We are developing a system
to deal with these issues. We previously described
the SI/PDO architecture [1,2]. In this paper we will
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describe continuing development of the architecture
to support visualization of simulation results.

last four stages on a single machine, often a
multiprocessor Silicon Graphics workstation with
large amounts of shared memory, as in Figure 2.
We started with the following constraints:

o The visualization tools currently work

though a socket interface. Dda Geonetry Imege Interaction
o  The tools are under constant development; SN [ Byaction [ Creation [ Rendering |~ m@@m
this means that capabilities and interfaces
are subject to change; the architecture must
be flexible enough to allow convenient Figure 1: Simulation Visualization Pipeline
testing of tools and interfaces.
o  The tools must be capable of running on
large MP machines; these machines vary as Dda
to the method of communication with the Transfer Deta Extraction
outside world, how jobs are launched, etc. Simidion | > Geomretry Qedtion
e  We need to support upcoming developments Image Rendering
at Sandia to provide more flexible access to Interaction/Navigetion
very large data sets.

e  We need to work with systems under
development that provide distributed
resource management.

These are the goals we hope to accomplish:

e Provide a framework for organizing
visualization tools.

¢ Develop an architecture that would be useful
for a range of tools; this architecture should
be useable in a range of environments, from
testing, to the use of large MP machines; it
should be flexible and adaptable to changing
tasks and network conditions.
Make tools available on the web.
Allow persistent sessions.
Provide services to the visualization tools,
such as file selection, display data file meta-
data, and automatic server launching.

2. SIMULATION VISUALIZATION PIPELINE

In this section, we give some background that will
explain why and how we are distributing the
processing steps of the simulation and visualization
process. A simulation visualization pipeline consists
of five stages, as shown in Figure 1. The first stage is
the simulation process in which simulation data is
created. The other stages extract visualization-related
data from the simulation database, create geometry
from that extraction, render the geometry into an
image, and allow interaction and navigation through
the geometry. Each stage in the pipeline represents a
data reduction from the previous stage. The stages
are logically separate, such that each could be
performed on a different computer. In practice, some
or all of the stages are usually combined. Traditional
post-processing visualization at Sandia performs the

Figure 2: Traditional Post-Processing Simulation
Visualization Architecture

The traditional approach breaks down as simulation
data volumes increase. The large amount of
geometry created swamps the capacity of the client
workstation.  Figure 3 depicts an alternative
architecture used in simulations with large data
volumes.  Essentially, most of the visualization
occurs on a “visualization engine” machine, with
only the resulting image being transmitted to the
client workstation. This packaging of stages forms
the basis for the simulation visualization architecture
presented in the body of the paper.
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Figure 3: Big Data Visualization Architecture
3. RELATED WORK

Because internet technologies are maturing, there is a
large amount of related development occurring in
areas that involve bringing distributed computing
resources and software tools to the user through the
web. The following discussion includes only a few
such examples that focus on visualization. An early
example of web-based visualization is presented in
[3]. The visualization pipeline model is evident in
this work, which, through a visualization web server,
provides the viewer control of the pipeline through
CGI forms, and produces VRML images as output. In




[4], an entire visualization package implemented as a
Java applet is discussed, with the benefits of
portability, ease of use, and interactivity, but poor
performance. In [5], an applet is also utilized, but
only as a front-end to a set of environmental vis tools
which are linked to a database that can gather real-
time information from sensors and feed them to the
browser. In [6], the pipeline is implemented as a set
of C++ and Java components that are connected
using CORBA to provide dynamic updates and a
high degree of user interactivity. In [7], Java3D
technology is incorporated in applet front-ends to
provide a portable viewer and the ability for users to
peer into the state of a simulation at a place,
perspective, and time of interest. Finally, the work
described in [8] also contains a layered model to
make existing vis systems web accessible, with layers
for the browser, authentication, problem setup,
listening daemons, application launchers, and the
legacy applications. Many of these concepts are
embodied in the architecture discussed in this paper.

4, THE INITIAL VISUALIZATION API

Existing Sandia vis tools have already been modified
to use the Model-View-Controller architecture. A
GUI (the view) can run on one machine and the
central computational core (the model) can run on
another machine (as shown in Figure 3 above). The
GUISs, however, are implemented with various
technologies such as Tcl/Tk and AVS, and they are
not easily accessed via a web browser. We
standardized on a Java-based web interface.

The view and the model communicate via sockets
using a home-grown socket library (called the comm
library). It provides a level of abstraction from
sockets that can be taken advantage of in converting
to a new architecture. By replacing the library, we
can change the communication technology from
sockets to something else (like CORBA) without
changing any of the source code in the visualization
tools. The interface has the following functions:

int Comm ServerInit(int port);

void Comm WaitForClient();

int Comm ConnectToServer(char *host, int port);
void Comm SendFlagMessage (int TYPE);

void Comm_SendStringMessage(int TYPE, char #*s);
void Comm SendByteArrayMessage(int TYPE, int size,
char *byte array):;

void Comm SendIntMessage(int TYPE, int i);

void Comn SendIntArrayMessage(int TYPE, int size,
int *int array):;

void Comm_SendFloatMessage(int TYPE, float £);
void Comm SendFloatArrayMessage(int TYPE, int size,
float *float array);

void Comm SendDoubleMessage(int TYPE, double d);
void Comm SendDoubleArrayMessage(int TYPE, int
size, double *double_array);

void Comm GetMessageHeader (int *TYPE, int *size);

void Comm GetMessageData(void *data):;

Both the client and the server can send and receive
data of various types using these functions once the
connection is made between them. Each function has
a TYPE field and a data object (or array). The
receiver receives the message header first which
indicates the type and length of the message data.

5. TWO INTERFACE STYLES

Currently the visualization tools use the comm library
to implement one of two styles of interface. The first
is a specific message protocol that uses the message
types to specify the desired function. These
interfaces often have 50-60 message types. The
messages are not functions but rather are one-way
messages. Some messages cause a return value to be
sent in a subsequent message. For example, the
interface to an isosurface visualization code currently
uses this first style and contains about 60 functions.
Some example are: send directory contents, choose
file, send transformation matrix, processor count,
starting time step, ending time step, time step
increment, number of isosurfaces, dummy value,
number of subsets, variables to isosurface,
disambiguate flag, surfaces values, etc.

The second interface is a smaller, more functional
interface that uses only five calls. The calls are:

Attribute GetAttribute(int attribute);
Void SetAttribute (Attribute attribute);
Void TakeAction(int actionID);
ImageInfo GetImageInfo() ;

TriMeshInfo GetTriMeshInfo() ;

In this interface we use the model that there are a
large number of attributes that can be set and fetched.
‘We have generic set and get functions and the first
argument determines the specific attribute to set or
get. It is easy to add new attributes without changing
the interface. You can also invoke a number of
actions. These actions are computations like creating
anew image. Using these primitives, you can build
up a multi-argument function call by setting an
attribute for each argument and then calling
TakeAction to invoke the function. Two attributes
are important enough to have their own functions: an
image and the tri-mesh information. This second
style of interface works better with the architecture
we are using and so we are converting all the
visualization tools to use this interface. We are
investigating the idea of converting to a third style of
interface. This will be discussed later in the paper.



6. THE ARCHITECTURE
Our Development Path

The first change we made was to provide a consistent
web-based interface to the visualization servers. We
are implementing the GUI using Java applets on a
web browser using the Swing components. The user
interface allows you to choose the visualization
server you wish to connect to, and panels appropriate
to the visualization tool selected are created when
you connect to it.

We are adding one or more tiers in between the GUI
and the visualization server. These tiers add services
such as remote file system browsing, browsing of
simulation file meta-data, automatic launching of
servers, load management on the server machines,
and simplified communication with MP machines.

The N-Tier Model

Our visualization architecture is based on the N-tier
model. The architecture will always include two
levels, the GUI and the visualization server, but
usually it will contain three or more levels. The GUI
will run as a Java program in the web browser. In the
two-tier version, the two tiers communicate by
sending socket-based messages such as
SendIntMessage, SendFloatArrayMessage, efc.
In order for these messages to make sense, the sender
and the receiver must agree on the meaning of each
message type. One of the messages is “Get directory
contents” and is used to browse the file system on the
server in order to select a file to use. Another
message is “Send isosurfaces value” which sets a
value to indicate the isosurface of interest. The
server will respond to this message by recomputing
the model, rendering it, and sending the rendered
image back to the GUI level.

This works fine if the server can communicate with
sockets. But suppose that the server is running on an
MP machine that cannot communicate with the
outside world but can only communicate with a
service node on the MP machine. In this case we
need to add a third level to the architecture.

A Purely Switching Middle Tier

We will call this middle level the command
processor. Somehow the command processor and
the server must be started on the MP machine. This
might be done manually, In more advanced versions
of our architecture, the command processor will

know how to start the visualization server and will do
it on command from the GUL

The GUI will start up and the user will tell it to
connect to the command processor (using sockets).
The command processor will then connect to the
visualization server. From then on, the command
processor acts only as a switch. Messages from the
GUI are passed through to the server and messages
from the server are passed through to the GUI. For
example, if the command processor receives a
message SendIntMessage, it will turn around and use
SendIntMessage to pass the message on to the server.
The command processor will not interpret the
message or even look at the type of the message. It
will treat all messages the same. The main advantage
of this version is that the command processor
encapsulates the knowledge of how to communicate
with the server on the compute nodes. The GUI
cannot communicate with the server directly so it
delegates the task to the command processor.

Adding Functions to the Middle Tier

We have some older MP machines where the
compute nodes can only communicate with the
service nodes (and hence the outside world) using
standard input and standard output. This can be
handled using this version of the architecture. First
the server must be changed to use standard input and
standard output for communication. This is done by
replacing the comm library with another version.
This version will, for example, implement
SendIntArrayMessage by converting the message
type, the length of the array, and the integers in the
array to their ASCII versions and writing these
strings to standard output. The standard input of the
command processor will be connected to the standard
output of the server (and vice versa). The command
processor will read this sequence of string on its
standard input. It will then transfer the call by
converting the integers to internal form and using the
usual socket version of sendIntArrayMessage to
send the array to the GUL

This does involve changing the server but only
slightly. All of the server code uses the comm library
to communicate. None of this code needs to be
rewritten. The only change is that a special version
of the comm library must be written and linked in
with the server. No knowledge of how the server
works is required to do this. All that is needed is
knowledge of the way in which compute nodes can
communicate with service nodes.




A Middle Tier with More Semantics

Any form of communication between compute and
service nodes can be accommodated using this
architecture. But now that we have a middle tier, we
have the possibility of transferring some of the
functions to the command processor which runs in
the middle tier.

We noted that the server has the responsibility of
sending the GUI the contents of directories on the
server’s file system. This is necessary because the
user must use the GUI to select a file on the server’s
file system. The GUI uses this function to implement
a remote file browser.

But file browsing is not a visualization function. It
has nothing to do with volume visualization, for
example. In addition, the GUI will need this function
with all visualization servers and it does not make
sense to implement it in every one of them. The
logical thing to do is to place this function in the
command processor. This requires the command
processor to examine each message to see if it is the
“Get directory contents” message. If it is, the
command processor will handle the message itself
and not pass it on to the server at all. The command
processor gets the directory contents, encodes it as
requires and sends it back using
SendsStringMessage.

If every visualization server uses the same message
type for the “Get directory contents” message then
the command processor can perform this function for
all the visualization servers. In addition, the file
browsing can be done before the server is even
started. This saves the scarce resource of execution
time on the MP machine.

There is one more function that the command
processor could implement for the visualization
servers. All of the visualization servers use the same
model file format (called Exodus). An Exodus file
contains meta-data that includes the number and
names of all the variables as well as several other
pieces of information.

A visualization GUI will put up lists of variable
names as well as other Exodus file meta-data.
Normally the server reads the Exodus file and so it
interprets and sends the meta-data to the GUL. But
the command processor can also open the Exodus
file, read the meta-data, and send it to the GUI for
display. This does mean that the meta-data will be
read twice since the server will have to read it also.
But the meta-data is at the beginning of the file and is

fairly small. The rest of the file contains the data
values. This part can be very large but it will only be
read by the server.

The meta-data function is also required by all
visualization servers and can be done even before the
server is started. So we have two common functions
that are taken on by the command processor.
Assuming the ability to handle these functions is left
in the servers (they do it now) then we will have the
option of using the two-tier or the three-tier
architecture. We have the option of leaving out the
command processor when it is not necessary. This is
true when we are working on the GUI and making
sure that the GUI and the server are communicating
correctly and that the GUI is displaying information
as we would like to see it.

We consider this to be an intermediate step in the
architecture. Eventually we will remove these
functions from all of the visualization servers and
always use a command processor. For debugging,
we will host the command processor and the server
on a desktop machine and their communication will
use local sockets. The advantage of the architecture
we have formulated is that we have the possibility of
evolving in this manner. At all intermediate stages
we have working systems that allow us to continue
the development of out visualization servers. This
flexibility comes from using the same interface in all
tiers.

Changing the Middleware

We have described the system using sockets for
communication (except for the case of using standard
input and standard output for one MP machine). We
used this as an example; the architecture does not
depend on the type of middleware used. Again we
have used an evolutionary approach to the problem.

In one experiment we wanted to use CORBA to
communicate between the GUI tier and the command
processor. The first step was to write a new version
of the comm library that used CORBA instead of
sockets. We implemented all of the comm functions
as CORBA IDL operations. For example,
SendIntMessage was made into a CORBA call. The
command processor was modified to use CORBA
functions also.

Note that the communication is in both directions and
so the GUI and the command processor both are
CORBA servers and CORBA clients. This is not
desirable and one way to get around it is to switch to
our second interface style, which we have called the
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five-function interface because it comprises five
functions (setattribute, Getattribute,
Takehction, GetImageInfo, and GetTriMeshInfo).

This interface has several advantages. The
immediate one is that it is a functional interface, that
is, each call is a function. If we convert it to CORBA
then the GUI is a CORBA client and the command
processor is a CORBA server. The command
processor (and hence the server) never sends
anything to the GUI without being asked. It only
returns values to the “Get*” functions. This
interface is also smaller and hence easier to
implement. Finally this interface allows us to add
new attributes and actions without changing the
command processor. As long as the GUI and the
server understand the attributes and actions, the
command processor can pass them through without
knowing their meaning. Conversion to Yava RMI,
COM, or other middleware would be equally easy.

7. ADDING MORE TIERS

The command processor is useful to customize the
communication with the compute nodes, to browse
the server’s file system, and to access data file meta-
data. There are other functions that could go between
the GUI and the server. Our architecture manages
these with additional tiers. We will look at some of
the additional tiers we have envisioned. None of
these are implemented yet. We will use the volume
visualization (VolVis) tool as an example.

We have discussed the possibility of a middle tier to
handle the launching of visualization servers. Figure
4 shows how that would fit in. Figure 5 shows the
addition of a tier which performs resource
management and chooses the most appropriate
machine to host the computation. Figure 6 shows a
situation where there are multiple visualization users
accessing multiple visualization servers. The
architecture is repeated three times in this figure
although there is sharing of some services.

Volvis: D
' Commind
Peasessor

MP mathine
K Isuncher o

Figure 4: A launching tier

Figure 5: Launching and choosing tiers

We might also add tiers above the command
processor. Figure 7 shows a service that combines
views from two command processors to allow the
integrated use of two visualization tools. Figure 8
shows the addition of a tier to handle session
management that allows a user to start a session and
then return to it later. Finally figure 9 shows all these
new tiers in a single diagram.

Dekdcpcient ecice

Figure 7: Combining two servers

 AEOMET AN AN



Figure 9: All the services together

8. CONCLUSIONS

Our architecture is based on the standard N-tier
model. We choose this model because it is logical
and flexible and has been shown to be an effective
architecture for web applications. We have been
investigating how to migrate our existing
visualization servers to this architecture. We have

also been investigating how a common interface at all

tiers improves the flexibility of the architecture.

We started with a simple separation of the GUI from
the visualization engine and then added new levels as

needed to meet the goals we have and deal with
problems in running the code on high-performance
machines. We will continue to evolve the

architecture as we gain experience with it. The main

future task before us is to integrate this architecture
with current developments at Sandia to handle the

problem of very large data files. This will add a new

tier to the system below the visualization server.
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