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ABSTRACT

i%e Simulation IntranetLProductDatabase Operator
(SI.DO) project has developed Web-based
distributed object architecturefor highpe~ormance
scientlj7c simulation. A Web-basedJava inte~ace
guihs &signers through the akrign andaiudysis
cycle via solid and analytical moa%ling,meshing,
jinite element simulation, andvariousforms of
visualization. l%e SILPDOarchitecture has evolved
insteps towmu?rsati&ying Sandia’s Iong-term goal of
providing an end-to-end set of services for high
jidelityjldlphysics simulations in a high-
peq+ormance,distributed and distance computing
environment. Zhispaper &scribes the continuing
evolution of the architecture toprovih high-
peq40nnance visualization services.

Extensions to the SIPDO architecture allow web
access to w“sualizationtools that run on MP systems.
l%is architecture makes these tools more easily
accessible by providing web-based interfaces and by
shielding the user~om the a%taiisof these computing
environments. Tile &m”gnis a multi-tier architecture,
where the Java-based GU7 tier runs on a web
browser andprovides image display and control
jmctions. l%e competition tier runs on A@
machines. The micililetiersprovide custom
communication with MP machines, remotefile
selection, remote Iaunchingof services, load
balancing, and machine selection. 7he architecture

allows mialileware of various types (CORBA, COM,
R.&U,sockets, etc) to connect the tiers using ahpters.
Thesystem allowsfor aaliing and removing of tiers
depending upon the situm”on. Testing of constantly
developing visualization tools can be done in an
environment where there are only twotiers which
both run on desktop machines. Z%isahwsf~
testing turnaround and &es not use compute cycles
on high-pe~onnance machines. Once the code and
inte~aces are tested they are moved to high-
perfiormance machines, and new tiers are aalied to
handle theproblems of using these machines.
Uniform inte~aces are used throughout the tiers to
allow this~exibility. &pen.ments test the
appropriate level of interface: either a large set of
specl~cfinction cd[s or a small set of generic
function calls. I%isarchitecture is basedon the
goals and constrm%tsof our environment: huge &ta
volumes (ttit cannot be easily moved), use of
multiple micililewareprotocols, MPpiafonn
portability, rapid development of the visualization
took, distributed resource management (of MP
resources), and the use of existing visualization tools.

1. INTRODUCTION

High fidelity Ml physics simulations require the
fastest available computers. These machines contain
protected environments and are often hard to use
because of compromises made for performance.
Historically at %ndiz users access these machines
d~ectly and follow their rules to run top-of-the-line
simulations. Recent developments in networking,
interfaces, and distributed computing are helping to
improve this situation. We are developing a system
to derd with these issues. We previously described
the SUPDO architecture [1,2]. In this paper we will
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describe continuing development of the architecture
to support visualization of simulation results.

We started with the following constraints:
c The visualiition tools currently work

though a socket interface.
c The tools are under constant development;

this means that capabtities and intefices
are subject to changq the architecture must
be flexible enough to allow convenient
testing of tools and interfaces.

. The tools must be capable of running on
large MP machine~ these machines vary as
to the method of communication with the
outside world, how jobs are launched, etc.

. We need to support upcoming developments
at Sandla to provide more flexible access to
very large data sets.

. We need to work with systems under
development that provide distributed
resource management.

These are the goals we hope to accomplish:
. Provide a fhmework for organizing

visualiition tools.
. Develop an architecture that would be usefid

for a range of tooky this architecture should
be useable in a range of environments, from
testing, to the use of large MP machines; it
should be flexible and adaptable to chrmging
tasks and network conditions.

c Make tools available on the web.
. Allow persistent sessions.
. Provide services to the visualization tools,

such as file selectio~ display &ta file meta-
dat~ and automatic server launching.

2. SIMULATION VISUALIZATION PIPELINE

In this sectio~ we give some background that will
explain why and how we are distributing the
processing steps of the simulation and visualization
process. A simulation visualization pipeline consists
of five stages, as shown in Figure 1. The first stage is
the simulation process in which simulation data is
created. The other stages extract visualization-related
data ilom the simulation database, create geometxy
from that extractio~ render the geometry into an
image, and allow interaction and navigation through
the geometry. Each stage in the pipeline represents a
data reduction from the previous stage. The stages
are logically separate, such that each could be
performed on a dflerent computer. In practice, some
or all of the stages are usually combined. Traditional
post-processing visualization at Sandia performs the

last four stages on a single machine, otlen a
multiprocessor Silicon Graphics workstation with
large amounts of shared memory, as in Figure 2.

Figure 1: Simulation Wwliz.ation Pipeliie
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Figure 2: Traditional Post-Processing Simulation
Vkmlization Architecture

The traditional approach breaks down as simulation
data volumes increase. The large amount of
geometq created swamps the capacity of the client
workstation. Figure 3 depicts an alternative
architecture used in simulations with large data
volumes. Essentially, most of the visualization
occurs on a “visualization engine” machine, with
only the resulting image being transmitted to the
client workstation. This packaging of stages forms
the basis for the simulation visualization architecture
presented in the body of the paper.

m

Figure 3: Big Data Vkualiition Architecture

3. RELATED WORK

Because intemet technologies are maturing there is a
large amount of related development occurring in
areas that involve bringing distributed computing
resources and sofhvare tools to the user through the
web. The following discussion includes only a few
such examples that focus on visualization. An early
example ofweb-based visualization is presented in
[3]. The visualization pipeline model is evident in
this work whic~ through a visualization web server,
provides the viewer control of the pipeline through
CGI forms, and produces VRML images as output. In



[4], an entire visualization package implemented as a
Java applet is discussed, with the benefits of
portability, ease of use, and interactivity, but poor
performance. In [5], an applet is also utilized, but
only as a front-end to a set of environmental vis tools
which are linked to a database that can gather real-
time information from sensors and feed them to the
browser. In [6], the pipeline is implemented as a set
of C++ and Java components that are connected
using COIU3Ato provide dynamic updates and a
high degree of user interactivity. In [7], Java3D
technology is incorporated in applet front-ends to
provide a portable viewer and the abfity for users to
peer into the state of a simulation at a place,
perspective, and time of interest. Finally, the work
described in [8] also contains a layered model to
make existing vis systems web accessible, with layers
for the browser, authenticatio~ problem setup,
listening daemons, application launchers, and the
legacy applications. Many of these concepts are
embodied in the architecture discussed in this paper.

4. THE INTH.AL VISUALIZATION API

Existing Sandia vis tools have already been modtied
to use the Model-View-Controller architecture. A
GUI (the view) can run on one machine and the
central computational core (the model) can run on
another machine (as shown in Figure 3 above). The
GUIS, however, are implemented with various
technologies such as Tcl/Tk and AVS, and they are
not easily accessed via a web browser. We
strmdard~ed on a Java-based web interfhce.

The view and the model communicate via sockets
using a home-grown socket library (called the comm
library). It provides a level of abstraction from
sockets that can be taken advantage of in converting
to a new architecture. By replacing the Iibrruy, we
can change the communication technology from
sockets to something else (like CORBA) without
changing any of the source code in the visualization
tools, The interface has the following fi,mctions:

int Conm_ServerInit (int port) ;
void Cmmr_WaitForClient ();
int Conm_ConneotToServer (ahar *host, int port) ;
void Conrn_SendFlagMessage (int TYPS) ;
void Comn_SendStringMassage (int TYPE, char ●s) ;
void Comn_Send13yteArrayMeasage (int TY9S, ink size,
ohar *byte_array) ;
void Conrn_SendIntMassage (int TYPS, int i) ;
void Comn_SendIntArrayMe ssage (int TYPS, int size,
int *int_array) ;
void Comn_SendFloathlassage (int TYPS, float f) ;
void Comr_SendFloatArrayMassage (int TYPS, int size,
float ●flOat_array) ;
void Conra_SendDoubleMessage (int TYPE, double d) ;
void Comn_SendDoublaArrayMessage (int TYPE, int
size, double *double_array) ;
void Ccmn_GatMessageXeader (int *TYPE, int *size) ;

void Conu_GatMessageOata (void ●data) ;

Both the client and the server can send and receive
data of various types using these fimctions once the
comection is made between them. Each fi.mctionhas
a TYPE field and a data object (or array). The
receiver receives the message header first which
indicates the type and length of the message data.

5. TWO INTERFACE STYLES

Currently the visualization tools use the comm library
to implement one of two styles of interface. The first
is a specific message protocol that uses the message
types to speci@the desired fi.mction. These
interfaces oilen have 50-60 message types. The
messages are not iiuwtions but rather are one-way
messages. Some messages cause a return value to be
sent in a subsequent message. For example, the
interface to an isosurface visualization code currently
uses this first style and contains about 60 fluwtions.
Some example are: send directory contents, choose
iile, send transformation ma~ processor count,
starting time step, ending time step, time step
increment, number of isosurfaces, dummy value,
number of subsets, variables to isosurface,
disambiguate flag surfaces values, etc.

The second interface is a smaller, more fimctionrd
interface that uses only five calls. The calls are:

Attributa GatAttribute (int attribute) ;
Void SetAttribute (Attribute attribute) ;
Void TakeAction (int actionIO) ;
bgdhfo GetImageInfo ();

TriMeshInf o GetTriMashInfo ();

In this interface we use the model that there area
large number of attributes that can be set and fetched.
We have generic set and get fimctions and the fist
argument determines the specific attribute to set or
get. It is easy to add new attributes without changing
the interfkce. You can also invoke a number of
actions. These actions are computations like creating
a new image. Using these primitives, you can build
up a multi-argument fimction call by setting an
attribute for each argument and then calling
TakeAction to invoke the fi.mction. Two attributes
are important enough to have their own fimctions: an
image rmdthe tri-mesh information. This second
style of interface works better with the architecture
we are using and so we are converting all the
visualization tools to use this interface. We are
investigating the idea of converting to a third style of
interface. This will be discussed later in the paper.
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6. THE ARCHITECTURE
know how to start the visualization server and will do
it on command from the GUI.

Our Development Path

The first change we made was to provide a consistent
web-based interface to the visualization servers. We
are implementing the GUI using Java applets on a
web browser using the Swing components. The user
interface allows you to choose the visualization
server you wish to comect to, and panels appropriate
to the visualization tool selected are created when
you comect to it.

We are adding one or more tiers in between the GUI
and the visualization server. These tiers add services
such as remote fde system browsing, browsing of
simulation file meta-da~ automatic launching of
servers, load management on the server machines,
and simplified communication with MP machines.

Zke N-Tier Model

Our visualiition architecture is based on the N-tier
model. The architecture will always include two
levels, the GUI and the visualization server, but
usually it will contain three or more levels. The GUI
will run as a Java program in the web browser. In the
two-tier versio~ the two tiers communicate by
sending socket-based messages such as
SendIntMessage, SendFloatArrayMessage, etc.

Inorder for these messages to make sense, the sender
and the receiver must agree on the meaning of each
message-type. One of the messages is “Get dwectory
contents” and is used to browse the file system on the
server in order to select a file to use. Another
message is “Send isosurl%cesvalue” which sets a
value to indicate the isosurface of interest. The
server will respond to this message by recomputing
the model, rendering it, and sending the rendered
image back to the GUI level.

This works fine if the server can communicate with
sockets. But suppose that the server is running on an
MP machine that cannot communicate with the
outside world but can only communicate with a
service node on the MI? machine. In this case we
need to add a third level to the architecture.

A Purely Switching MiaUie Tier

We will call this middle level the command
processor. Somehow the canrnand processor and
the server must be started on the MP machine. This
might be done manually. In more advanced versions
of our architecture, the command processor will

The GUI will start up and the user will tell it to
connect to the command processor (using sockets).
The command processor will then connect to the
visualization server. From then o% the command
processor acts only as a switch. Messages from the
GUI are passed through to the server and messages
from the server are passed through to the GUI. For
example, if the canrnand processor receives a
message SendIntMessage, it will turn around and use
SendIntMessage to pass the message on to the server.
The command processor will not interpret the
message or even look at the type of the message. It
will treat all messages the same. The main advantage
of this version is that the command processor
encapsulates the knowledge of how to communicate
with the server on the compute nodes. The GUI
cannot communicate with the server directly so it
delegates the task to the command processor.

AaWng Functions to the A4iddie Tier

We have some older MP machines where the
compute nodes can only communicate with the
service nodes (and hence the outside world) using
standard input and standard output. This can be
handled using this version of the architecture. Fwst
the server must be changed to use standard input and
standard output for communication. This is done by
replacing the comm library with another version.
This version will, for example, implement
Sen~nizArrayMessage by converting the message
type, the length of the array, and the integers in the
array to their ASCII versions and writing these
strings to standard output. The standard input of the
command processor will be connected to the standard
output of the server (and vice versa). The command
processor will read this sequence of string on its
standard input. It will then transfer the call by
converting the integers to internal form and using the
usual socket version of sen=n~ra~essage to
send the array to the GUI.

This does involve changing the server but only
slightly. All of the server code uses the comm library
to communicate. None of this code needs to be
rewritten. The only change is that a special version
of the comm library must be written and linked in
with the server. No knowledge of how the server
works is required to do this. All that is needed is
knowledge of the way in which compute nodes can
communicate with service nodes.



A Mialile Tier with More Semantics

Any form of communication between. compute and
service nodes can be accommodated using this
architecture. But now that we have a middle tier, we
have the possibility of transferring some of the
flmctions to the command processor which runs in
the middle tier.

We noted that the server has the responsibility of
sending the GUI the contents of dhectories on the
server’s file system. This is necessary because the
user must use the GUI to select a tie on the server’s
file system. The GUI uses this fimction to implement
a remote file browser.

But file browsing is not a visualization finction. It
has nothing to do with volume visualizatio~ for
example. In additio~ the GUI will need this fimction
with all visualiition servers and it does not make
sense to implement it in every one of them. The
logical thing to do is to place this fimction in the
command processor. This requires the command
processor to examine each message to see if it is the
“Get directory contents” message. Ifit is, the
command processor will handle the message itself
and not pass it on to the server at all. The command
processor gets the duectory contents, encodes it as
requires and sends it back using
SendSfxingMessage.

If every visualiition server uses the same message
type for the “Get d~ectory contents” message then
the command processor can petiorm this fimction for
all the visualization servers. In additio~ the file
browsing can be done before the server is even
started. This saves the scarce resource of execution
time on the MP machine.

There is one more fimction that the command
processor could implement for the visualization
servers, All of the visualization servers use the same
model file format (called Exodus). An Exodus file
contains meta-data that includes the number and
names of all the variables as well as several other
pieces of itiormation.

A visualization GUI will put up lists of variable
names as well as other Exodus file meta-data.
Normally the server reads the Exodus file and so it
interprets and sends the meta-data to the GUI. But
the command processor can also open the Exodus
tie, read the meta-datz and send it to the GUI for
display. This does mean that the meta-data will be
read twice since the server will have to read it also.
But the meta-data is at the beginning of the file and is

fairly small. The rest of the fde contains the data
values. This part can be very large but it will ordy be
read by the server.

The meta-data function is also required by all
visualization servers and can be done even before the
sewer is started. So we have two common fictions
that are taken on by the command processor.
Assuming the ability to handle these fimctions is Iefi
in the sewers (they do it now) then we will have the
option of using the two-tier or the three-tier
architecture. We have the option of leaving out the
command processor when it is not necessary. This is
true when we are working on the GUI and making
sure that the GUI and the server are communicating
correctly and that the GUI is displaying information
as we would like to see it.

We consider this to be an intermediate step in the
architecture. Eventually we will remove these
fimctions from all of the visualization servers and
always use a command processor. For debugging,
we will host the canrnand processor and the server
on a desktop machine and their communication will
use local sockets. The advantage of the architecture
we have formulated is that we have the possibility of
evolving in this manner. At all intermediate stages
we have working systems that allow us to continue
the development of out visualization servers. This
flexibility comes from u<mgthe same interface in all
tiers.

Chang”ngtheA4iddleware

We have described the system using sockets for
communication (except for the case of using standard
input and standard output for one MP machine). We
used this as an example, the architecture does not
depend on the type of middleware used. Again we
have used an evolution~ approach to the problem.

In one experiment we wanted to use CORBA to
communicate between the GUI tier and the command
processor. The first step was to write a new version
of the comm library that used CORBA instead of
sockets. We implemented all of the comm flmctions
as CORBA IDL operations. For example,
SendIntMessage was made into a CORBA call The
command processor was modified to use CORBA
fimctions also.

Note that the communication is in both d~ections and
so the GUI and the command processor both are
CORBA servers and CORBA clients. This is not
desirable and one way to get around it is to switch to
our second interlace style, which we have called the



five-fl.mctioninterface because it comprises five
finctions (SetAttribute,*tAttribute,

TelceAotioqGetImegeInfo, ~d GetTriMeshInfo).

This interface has several advantages. The
immediate one is that it is a fictional interface, that
is, each call is a finction. If we convert it to CORBA
then the GUI is a COIU3A client and the command
processor is a CORBA server. The command
processor (and hence the server) never sends
anything to the GUI without being asked. It only
returns values to the “Get*” fhnctions. This
interface is also smaller and hence easier to
implement. Finally this interface allows us to add
new attributes and actions without changing the
command processor. As long as the GUI and the
server understand the attributes and actions, the
command processor can pass them through without
knowing their meaning. Conversion to Java ~
CO~ or other middleware would be equally easy.

7. ADDING MORE TIERS

The command processor is usefid to customize the
communication with the compute nodes, to browse
the server’s file system and to access data file meta-
data. There are other fi,mctionsthat could go between
the GUI and the server. Our architecture manages
these with additional tiers. We will look at some of
the additional tiers we have envisioned. None of
these are implemented yet. We will use the volume
Visudlzation (VolVls) tool as an example.

We have discussed the possibility of a middle tier to
handle the launching of visualization servers. Figure
4 shows how that would fit in. Figure 5 shows the
addition of a tier which performs resource
management and chooses the most appropriate
machine to host the computation. Figure 6 shows a
situation where there are multiple visualization users
accessing multiple visualization servers. The
architecture is repeated three times in this figure
although there is sharing of some services.

eVoNii
GUI

ouJillml-

R
M“Pm&blnc
>Imetpr :

‘ ‘,voWJa; ,.
scwr..

Figure 4: A Imnchiig tier

Q
Vil
OU1

%Yulcnmt,

Fxgure5: Launching and ChOOS@ tiers

We might also add tiers above the command
processor. Figure 7 shows a service that combmes
views from two command processors to allow the
integrated use of two visualization tools. F@re 8
shows the addhion of a tier to handle session
management that allows a user to start a session and
then return to it later. Finally figure 9 shows all these
new tiers in a single diagram.
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8. CONCLUSIONS

Our architecture is based on the standard N-tier
model. We choose this model because it is logical
and flexible and has been shown to be an effxtive
architecture for web applications. We have been
investigating how to migrate our existing
visualkation servers to this architecture. We have
also been investigating how a common interface at all
tiers improves the flexibfity of the architecture.

We started with a siiple separation of the GUI from
the visualization engine and then added new levels as
needed to meet the goals we have and deal with
problems in running the code on high-performance
machines. We will continue to evolve the
architecture as we gain experience with it. The main
future task before us is to integrate this architecture
with current developments at Sandia to handle the
problem of very large data files. This will add a new
tier to the system below the visualization server.
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