skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strength of Butt and Sharp-Cornered Joints

Journal Article · · The Mechanics of Adhesion
OSTI ID:760752

There has been considerable progress in recent years towards developing a stress intensity factor-based method for predicting crack initiation at a sharp, bimaterial comer. There is now a comprehensive understanding of the nature of multi-material, two-dimensional, linear-elastic, wedge-tip stress fields. In general, the asymptotic stress state at the apex of dissimilar bonded elastic wedges (i.e. at an interface comer) can have one or more power-law singularities of differing strength and with exponents that can be real or complex. There are, however; many configurations of practical importance, (e.g. adhesively bonded butt joints, hi-material beams, etc.) where interface-comer stresses are described by one, real-valued power-law singularity. In such cases, one can reasonably hypothesize that failure occurs at a critical value of the stress intensity factor: when K{sub a}=K{sub ac}.This approach is completely analogous to LEFM except that the critical stress intensity factor is associated with a discontinuity other than a crack. To apply the K{sub ac} criterion, one must be able to accurately calculate K{sub a} for arbitrary geometries. There are several well-established methods for calculating K{sub a}. These include matching asymptotic and detailed finite element results, evaluation of a path-independent contour integral, and general finite element methods for calculating K. for complex geometries. A rapidly expanding catalog of K{sub a} calibrations is now available for a number of geometries of practical interest. These calibrations provide convenient formulas that can be used in a failure analysis without recourse to a detailed numerical analysis. The K{sub ac} criterion has been applied with some notable successes. For example, the variation in strength of adhesively bonded butt joints with bond thickness and the dependence of this relationship on adhered stiffness is readily explained. No other one-parameter fracture criterion is able to make this sort of prediction. Nevertheless, the interface-corner fracture toughness approach is just in its initial states of development, and its strengths and limitations must be more clearly defined. There are still numerous issues yet to be resolved, including the development of methods for treating time-dependent response, three-dimensional comers, large-scale yielding, and the development of a criterion that can be applied when the comer stress state is not characterized by a single K{sub a}.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
760752
Report Number(s):
SAND2000-2097J; TRN: AH200103%%4
Journal Information:
The Mechanics of Adhesion, Other Information: Submitted to The Mechanics of Adhesion; PBD: 21 Aug 2000
Country of Publication:
United States
Language:
English