skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface Morphology Changes During Pb Deposition on Cu(100): Evidence for Surface Alloyed Cu(100)-c(2x2) Pb

Journal Article · · Surface Science

Using Low Energy Electron Microscopy (LEEM), the authors have followed Cu(100) surface morphology changes during Pb deposition at different temperatures. Surface steps advance and 2-D islands nucleate and grow as deposited Pb first alloys, and then dealloys, on a 125 C Cu(100)surface. From LEEM images, they determine how much Cu is being displaced at each stage and find that the amount of material added to the top layer for a complete Pb/Cu(100) c(4x4) reconstruction (a surface alloy) is consistent with the expected c(4x4) Cu content of 0.5 monolayer. However, as the surface changes to the Pb/Cu(100) c(2x2) overlayer, they find that the displaced material from surface dealloying, 0.22ML, is more than a factor of two lower than expected based on a pure Pb c(2x2) overlayer. Further, they find that in the 70 to 130 C range the amount of Cu remaining in c(2x2) increases with increasing substrate temperature during the deposition, showing that surface Cu is alloyed with Pb in the c(2x2) structure at these temperatures. When holding the sample at 125 C, the transformation from the c(2x2) structure to the higher coverage c(5{radical}2 x{radical}2)R45{degree} overlayer structure displaces more Cu, confirming the c(2x2) surface alloy model. They also find the c(2x2) surface has characteristically square 2-D islands with step edges parallel to the (100) type crystallographic directions, whereas the c(5{radical}2 x{radical}2)R45{degree} structure has line-like features which run parallel to the dislocation double rows of this surface's atomic structure and which expand into 2-D islands upon coarsening.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
759888
Report Number(s):
SAND2000-1641J; TRN: AH200031%%136
Journal Information:
Surface Science, Other Information: Submitted to Surface Science; PBD: 13 Jul 2000
Country of Publication:
United States
Language:
English