Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Mesoscopic-scale observations of surface alloying, surface phase transitions, domain coarsening, and 3-D island growth: Pb on Cu(100)

Conference ·
OSTI ID:755629

Low energy electron microscopy (LEEM) is used to investigate the dynamics of Pb overlayer growth on Cu(100). By following changes in surface morphology during Pb deposition, the amount of Cu transported to the surface as the Pb first alloys into the surface during formation of the c(4x4) phase and subsequently de-alloys during conversion to the c(2x2) phase is measured. The authors find that the added coverage of Cu during alloying is consistent with the proposed model for the c(4x4) alloy phase, but the added coverage during de-alloying is not consistent with the accepted model for the c(2x2) phase. To account for the discrepancy, the authors propose that Cu atoms are incorporated in the c(2x2) structure. Island growth and step advancement during the transition from the c(2x2) to c(5{radical}2x{radical}2)R45{degree} structure agrees with this model. The authors also use the LEEM to identify the order and temperature of the two-dimensional melting phase transitions for the three Pb/Cu(100) surface structures. Phase transitions for the c(5{radical}2x{radical}2)R45{degree} and c(4x4) structures are first-order, but the c(2x2) transition is second order. They determine that rotational domains of the c(5{radical}2x{radical}2)R45{degree} structure coarsen from nanometer- to micron-sized dimensions with relatively mild heating ({approximately}120 C), whereas coarsening of c(4x4) domains requires considerably higher temperatures ({approximately}400 C). In studies of three-dimensional island formation, they find that the islands grow asymmetrically with an orientational dependence that is directly correlated with the domain structure of the underlying c(5{radical}2x{radical}2)R45{degree} phase.

Research Organization:
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
755629
Report Number(s):
SAND2000-0588C
Country of Publication:
United States
Language:
English

Similar Records

Surface Morphology Changes During Pb Deposition on Cu(100): Evidence for Surface Alloyed Cu(100)-c(2x2) Pb
Journal Article · Thu Jul 13 00:00:00 EDT 2000 · Surface Science · OSTI ID:759888

The Relationship Between the Growth Shape of Three-Dimensional Pb Islands on Cu(100) and the Domain Orientation of the Underlying c(5v2xv2)R45 Degree Structure
Journal Article · Mon Jun 12 00:00:00 EDT 2000 · Surface Science Letters · OSTI ID:759849

Self-organized systems for measuring surface stress at the nanoscale: N and O adsorption on Cu(001)
Journal Article · Mon May 15 00:00:00 EDT 2006 · Physical Review. B, Condensed Matter and Materials Physics · OSTI ID:20788193