skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL

Technical Report ·
DOI:https://doi.org/10.2172/757276· OSTI ID:757276

Remarkably mild conditions have been discovered for quantitative sulfur removal from dibenzothiophene and other organosulfur systems using relatively cheap elemental sodium. The project objectives are: (1) Optimize the coal desulfurization reaction with respect to time, temperature, coal type and the R groups (including R = H), and also on extraction, impregnation and sonication conditions; (2) Optimize the conditions for the HDS reaction (which allows the PR{sub 3} to function as an HDS catalyst for coal) with respect to R group, temperature, pressure, H{sub 2} gas flow rate and inert solvent presence; (3) Determine the product(s) and the pathway of the novel redox reaction that appears to quantitatively remove sulfur from dibenzothiophene (DBT) when R = Bu when FeCl{sub 3} is used as a catalyst; (4) Impregnate sulfur-laden coals with Fe{sup 3+} to ascertain if the PR{sub 3} desulfurization rate increases; (5) Determine the nature of the presently unextractable phosphorus compounds formed in solid coals by PR{sub 3}; (6) Explore the efficacy of PR{sub 3}/Fe{sup 3+} in removing sulfur from petroleum feedstocks, heavy ends (whether solid or liquid), coal tar and discarded tire rubber; (7) Explore the possibility of using water-soluble PR{sub 3} compounds and Fe{sup 3+} to remove sulfur from petroleum feedstocks and heavy ends in order to remove the SPR{sub 3} (and Fe{sup 3+} catalyst) by water extraction (for subsequent HDS of the SPR{sub 3}); and (8) Explore the possibility of using solid-supported PR{sub 3} compounds (plus Fe{sup 3+} catalyst) to remove sulfur from petroleum feedstocks and heavy ends in order to keep the oil and the SPR{sub 3} (formed in the reaction) in easily separable phases.

Research Organization:
Federal Energy Technology Center Morgantown (FETC-MGN), Morgantown, WV (United States); Federal Energy Technology Center Pittsburgh (FETC-PGH), Pittsburgh, PA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
FG22-95PC95208
OSTI ID:
757276
Report Number(s):
DE-FG22-95PC95208-04; TRN: AH200031%%29
Resource Relation:
Other Information: PBD: 31 Aug 1997
Country of Publication:
United States
Language:
English