Quenching excited triplet C{sub 60} fullerene by tetracyanoethylene in benzonitrile
- Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)
The main photophysical properties of C{sub 60} fullerene: The absorption spectra of excited singlet C{sub 60}, the inter-combinational conversion time, the quantum yield of triplet C{sub 60}, the triplet-triplet absorption spectra, and the channels and rate constants of the deactivation of triplet C{sub 60} have been established. The photochemical properties of C{sub 60} fullerene have been investigated to a lesser degree. C{sub 60} is known to be readily reduced (E{sub 1/2} = {minus}0.4 in relation to Ag/Ag{sup +}), in particular, photochemically. For example, photoexcitation of charge-transfer complexes of C{sub 60} with amines gives the radical anion C{sup {minus}}{sub 60} which is also formed in reactions of photoexcited C{sub 60} fullerene. The formation of the radical cation C{sup +}{sub 60} under the action of light has been detected in the reaction with colloidal TiO{sub 2}. The radical ion C{sup +}{sub 60} has been obtained in a homogeneous photochemical process: the reaction of unexcited C{sub 60} with excited singlet N-methylacridinium hexafluorophosphate or with the biphenyl radical cation generated in the reaction with excited singlet N-methylacridinium hexafluorophosphate. The formation of C{sup +}{sub 60} with an electron acceptor in a homogeneous process has not so far been observed. The purpose of this work has been to study the quenching of triplet {sup 3}C{sub 60} with an electron acceptor, tetracyanoethylene (TCNE), which is known to oxidize unsaturated or aromatic hydrocarbons in photochemical reactions.
- OSTI ID:
- 75691
- Journal Information:
- Russian Chemical Bulletin, Journal Name: Russian Chemical Bulletin Journal Issue: 7 Vol. 42; ISSN RCBUEY; ISSN 1066-5285
- Country of Publication:
- United States
- Language:
- English
Similar Records
Production of C{sub 60} radical cation by photosensitized electron transfer
Electron transfer to triplet C{sub 60}