X-Ray Microbeam Measurement of Local Texture and Strain in Metals
- ORNL
Synchrotron x-ray sources provide high-brilliance beams that can be focused to submicron sizes with Fresnel zone-plate and x-ray mirror optics. With these intense, tunable or broad-bandpass x-ray microbeams, it is now possible to study texture and strain distributions in surfaces, and in buried or encapsulated thin films. The full strain tensor and local texture can be determined by measuring the unit cell parameters of strained material. With monochromatic or tunable radiation, at least three independent reflections are needed to determine the orientation and unit cell parameters of an unknown crystal. With broad-bandpass or white radiation, at least four reflections and one measured energy are required to determine the orientation and the unit cell parameters of an unknown crystal. Routine measurement of local texture and strain is made possible by automatic indexing of the Laue reflections combined with precision calibration of the monochromator-focusing mirrors-CCD detector system. Methods used in implementing these techniques on the MHA-IT-CAT beam line at the Advanced Photon Source will be discussed.
- Research Organization:
- Oak Ridge National Lab., TN (US)
- Sponsoring Organization:
- USDOE Office of Science (US)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 755655
- Report Number(s):
- ORNL/CP-105938
- Country of Publication:
- United States
- Language:
- English
Similar Records
Automated indexing of Laue images from polycrystalline materials
X-ray microprobe: The next step in microcharacterization