Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Photocharge transport and recombination measurements in amorphous silicon films and solar cells by photoconductive frequency mixing: Annual subcontract report, 20 April 1998--19 April 1999

Technical Report ·
DOI:https://doi.org/10.2172/754628· OSTI ID:754628
In the present phase of the program, the transport parameters of a number of amorphous semiconductors prepared by a number of techniques were determined by the photoconductive frequency mixing technique. This technique enabled the authors to determine the drift mobility, md, and the photomixing lifetime, t. The technique is based on the idea of heterodyne detection for photoconductors. When two similarly polarized monochromatic optical beams of slightly different frequencies are incident upon a photoconductor, the generation rate of electron-hole pairs will produce a photocurrent, when a dc-bias is applied, which will contain components resulting from the square of the sum of the individual incident fields. Consequently, a photocurrent will be produced, which will consist of a direct current and a microwave current corresponding to the beat frequency. These two currents allow a separate determination of the drift mobility and the photomixing lifetime of the photogenerated carriers. In the present work, the longitudinal modes of a He-Ne laser were employed to generate a beat frequency of 252 MHz; all the measurements were performed at this frequency for the data indicated in the accompanying figures. The following topics were explored: Measurements of the charge transport parameters of homogeneous a-SiGe:H alloys produced by NREL employing the hot-wire technique; The change in the charge transport parameters in the transition from hydrogenated amorphous silicon to microcrystalline silicon for material produced by NREL and MVSystems; The improvement in instrumentation of the photomixing measurements; Measurements of the hydrostatic dependency of the transport parameters of amorphous silicon; and Preliminary photomixing measurements on p-i-n devices.
Research Organization:
National Renewable Energy Lab., Golden, CO (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC36-99GO10337
OSTI ID:
754628
Report Number(s):
NREL/SR-520-27931
Country of Publication:
United States
Language:
English