Nonlinear system modeling based on experimental data
- Sandia National Laboratories
The canonical variate analysis technique is used in this investigation, along with a data transformation algorithm, to identify a system in a transform space. The transformation algorithm involves the preprocessing of measured excitation/response data with a zero-memory-nonlinear transform, specifically, the Rosenblatt transform. This transform approximately maps the measured excitation and response data from its own space into the space of uncorrelated, standard normal random variates. Following this transform, it is appropriate to model the excitation/response relation as linear since Gaussian inputs excite Gaussian responses in linear structures. The linear model is identified in the transform space using the canonical variate analysis approach, and system responses in the original space are predicted using inverse Rosenblatt transformation. An example is presented.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
- Sponsoring Organization:
- US Department of Energy (US)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 751172
- Report Number(s):
- SAND2000-0319C
- Country of Publication:
- United States
- Language:
- English
Similar Records
Polynomial chaos representation of spatio-temporal random fields from experimental measurements
Efficient Stochastic Inversion Using Adjoint Models and Kernel-PCA