Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A new probe of metallization microstructure on semiconductor surfaces

Conference · · Journal of Vacuum Science and Technology. B, Microelectronics Processing and Phenomena; (United States)
OSTI ID:7305968
; ; ; ; ;  [1]
  1. Univ. of Minnesota, Minneapolis (United States)

Synchrotron radiation photoemission spectroscopy studies of the Xe 4d core level emission from Xe atoms physisorbed on unreactive Yb-GaAs(110) and reactive Yb-Hg{sub 1-x}Cd{sub x}Te(110) interfaces allowed the authors to detect the presence of metallic islands and follow the coverage-dependent evolution of island composition and morphology. Measurements of local island work function, and local work function of the semiconductor surface between the islands can be performed if the ionization energy of the adsorbed Xe atoms is known a priori. They conducted systematic studies of Xe physisorption on a variety of elemental metallic films and cleaved semiconductor substrates, and found that the 4d ionization energy of the first layer Xe atoms physisorbed on metals is relatively constant (65.7{plus minus}0.1 eV). On cleaved semiconductor surfaces the apparent 4d ionization energy for Xe atoms adsorbed in the first of two physisorption sites is also relatively constant, but 0.6 eV higher than that observed on metals.

OSTI ID:
7305968
Report Number(s):
CONF-910115--
Journal Information:
Journal of Vacuum Science and Technology. B, Microelectronics Processing and Phenomena; (United States), Journal Name: Journal of Vacuum Science and Technology. B, Microelectronics Processing and Phenomena; (United States) Vol. 9:4; ISSN 0734-211X; ISSN JVTBD
Country of Publication:
United States
Language:
English