Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Surface integrity of creep feed ground structural ceramics

Thesis/Dissertation ·
OSTI ID:7266776

This study investigates the mechanics of creep feed grinding of structural ceramics with particular emphasis on the integrity of the finished surface. A fractional factorial experiment of 2{sup 5} conditions was used to determine the effects of grinding wheel bond (resinoid and vitreous), grit size (80 and 180), grit concentration (50 and 100) and work speed on Al{sub 2}O{sub 3} and ZrO{sub 2} specimens. Two depths of cut were interspersed with the varied grinding conditions. Normal and tangential grinding wheel stresses were calculated from wheel entry and exit incremental, measured vertical and horizontal force data. Average normal and tangential stresses were found to be nearly constant below a local material removal rate of about 4 mm{sup 2}/sec{sup 2} (time rate of change of volumetric removal rate per unit wheel width). This implies that rubbing or plowing predominates in the low material removal rate region of the finished surface. In the higher material removal rate regions, large grinding wheel stresses imply greater abrasive grit penetration into the workpiece and a predominance of lateral fracture as a removal mechanism. An additional result of the stress determination is that exit conditions are different from entry conditions and thus highlight the effect of median fracture as a result of workpiece geometry.

Research Organization:
Lehigh Univ., Bethlehem, PA (United States)
OSTI ID:
7266776
Country of Publication:
United States
Language:
English