Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The Role of Interfacial Properties on MEMS Performance and Reliability

Conference ·
OSTI ID:7264

We have constructed a humidity-controlled chamber in which deflections of polysilicon cantilever beams are observed by interferometry, resulting in in-situ adhesion measurements within a fracture mechanics framework. From adhesion energy measurements for uncoated hydrophilic beams, we demonstrate an exponential dependence of adhesion on relative humidity (RH). We can explain this trend with a single-asperity model for capillary condensation. For coated hydrophobic beams, adhesion is independent of RH up to a threshold value which depends on the coating used. However, we have found that exposure to very high RH ({ge}90%) ambients can cause a dramatic increase in adhesion, surprisingly with a stronger effect for perfluorodecyltrichlorosilane (FDTS, C{sub 10}H{sub 4}F{sub 17}SiCl{sub 3}) than octadecyltrichlorosilane (ODTS, C{sub 18}H{sub 37}SiCl{sub 3}). Newly developed computational mechanics to measure adhesion in the presence of an applied load allow us to explore how the adhesion increase develops. We believe that water adsorption at silanol sites at the FDTS/substrate interface, possibly exacerbated by coupling agent migration, leads to water islanding and the subsequent adhesion increase at very high RH levels.

Research Organization:
Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
7264
Report Number(s):
SAND99-1294C
Country of Publication:
United States
Language:
English

Similar Records

Humidity Dependence of Adhesion for Silane Coated Microcantilevers
Journal Article · Mon Nov 08 23:00:00 EST 1999 · Langmuir · OSTI ID:14828

Adhesion of polysilicon microbeams in controlled humidity ambients
Technical Report · Tue Mar 31 23:00:00 EST 1998 · OSTI ID:658196

Use of Self-Assembling Monolayers to Control Interface Bonding in a Model Study of Interfacial Fracture
Conference · Thu Mar 04 23:00:00 EST 1999 · OSTI ID:4261