Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Genetic recombination of ultraviolet-irradiated nonreplicating lambda DNA

Thesis/Dissertation ·
OSTI ID:7245403
Genetic recombination of ultraviolet-irradiated, nonreplicating lambda DNA was studied. Escherichia coli homoimmune lysogens were infected with ultraviolet-irradiated lambda phage whose DNA possessed a tandem duplication of the A to V genes. Recombination between duplicated segments produced lambda, DNA molecules possessing only one copy of the A to V region. DNA was extracted from cells and used to transfect recombination-deficient spheroplasts. Transfection lysates were assayed for total lambda phage and recombinant (EDTA-resistant) phage. Ultraviolet-stimulated recombination was shown to be completely RecA-dependent, mostly RecF-dependent, and RecBC and RecE-independent. Experiments with excision repair-deficient (uvr-) bacteria suggested that ultraviolet-stimulated recombination occurred by both Uvr-dependent and Uvr-independent processes. A role for pyrimidine dimers in recombination was indicated by the reduction in recombination frequency subsequent to photoreactivation and by experiments using lambda phase irradiated under conditions that produce almost exclusively pyrimidine dimers. A role for photoproducts other than pyrimidine dimers was suggested by the photo-reactivation-insensitive component of 254nm-stimulated recombination and by the observation that recombination frequencies of 254-irradiated phage were much greater than those of 313 nm/acetophenone-irradiated phage when both types of phage possessed the same number of pyridimidine dimers per lambda duplex.
Research Organization:
Maryland Univ., Baltimore (USA)
OSTI ID:
7245403
Country of Publication:
United States
Language:
English